Hydrocarbon accumulation process, and effective natural gas accumulation in Permian Changxing Formation, southeastern Sichuan Basin
-
摘要: 四川盆地东南部二叠系长兴组天然气聚集成藏规律复杂,为此,基于热演化史恢复、岩石薄片、矿物同位素、流体包裹体等分析手段,研究了该区烃源岩热演化供烃过程、储层成岩作用和孔隙演化、古油藏热裂解记录,揭示了长兴组天然气藏成藏演化过程。研究表明,该区长兴组颗粒滩相和生物礁相以及白云岩化控制了优质储层的发育;中—晚侏罗世原油充注形成古油藏,晚侏罗世—早白垩世古油藏发生相态转化,原油原位热裂解并发生一定的硫酸盐还原作用,古油藏相态转化成为高温高压气藏;喜马拉雅期川东南地区强烈的挤压变形过程中,古气藏发生位置调整,弱构造变形区良好的保存条件是气藏持续保存的关键,储层孔隙中赋存干沥青和干气,而强变形区保存条件变差,气藏中的天然气发生泄漏,储层孔隙中除油藏裂解产生的干沥青外,还发育晚期方解石胶结,使储层发生致密化。因此,四川盆地东南部地区二叠系长兴组优质储层和气藏保存条件是天然气规模有效聚集的关键。Abstract: The Permian Changxing Formation in the southeastern Sichuan Basin has complex natural gas accumulation patterns. Using analysis methods such as thermal evolution history reconstruction, rock thin sections, mineral isotopes, and fluid inclusions, this study investigated the hydrocarbon generation process of source rocks, reservoir diagenesis and pore evolution, and thermal cracking records of paleo-oil reservoirs, thereby revealing the evolution process of natural gas accumulation in the Changxing Formation. The study showed that the development of high-quality reservoirs was controlled by grain shoal facies, reef facies, and dolomitization. During the Middle and Late Jurassic, crude oil charging formed paleo-oil reservoirs, which subsequently underwent phase transformation in the Late Jurassic to Early Cretaceous. This process involved in-situ thermal cracking of crude oil accompanied by partial sulfate reduction, transforming the paleo-oil reservoirs into high-temperature, high-pressure gas reservoirs. During the Himalayan orogeny, the intense compressional deformation in southeastern Sichuan caused positional readjustment of paleo-gas reservoirs. The favorable preservation conditions in weak structural deformation zones proved critical for the sustained preservation of these gas reservoirs. The reservoir pores contained pyrobitumen and dry gas, while the strong deformation zones exhibited poorer preservation conditions, leading to natural gas leakage. In addition to the pyrobitumen formed by oil cracking, the reservoir pores also developed late-stage calcite cementation, resulting in reservoir densification. Therefore, the preservation conditions of high-quality reservoirs and gas accumulations in the Permian Changxing Formation are crucial for the effective large-scale accumulation of natural gas in the southeastern Sichuan Basin.
-
Key words:
- diagenesis /
- pore evolution /
- natural gas accumulation /
- Changxing Formation /
- Permian /
- Sichuan Basin
-
图 4 四川盆地东南部二叠系长兴组储集空间类型
a.TL202井,4 968.85 m,藻礁灰岩的藻纹层结构,格架孔内见2个世代方解石胶结,孔隙中充填亮晶方解石,方解石颗粒边缘可见沥青充填;b.TL202井,4 976.7 m,生物格架孔中发育世代方解石胶结,Ⅰ世代为纤维状胶结,Ⅱ世代白云石胶结及Ⅲ世代柱状亮晶方解石充填,Ⅱ世代白云石与Ⅲ世代方解石间见干沥青充填;c.XL1井,4 600.2 m,粉—细晶白云岩及残余粒屑结构,发育晶间孔;d.XL1井,4 605 m,白云岩中发育晶间孔及晶间溶孔,孔隙边缘固体沥青充填; e.XL1井,4 600.2 m,残余粒屑粉—细晶云岩中的晶间溶蚀扩大孔,晶边呈港湾状溶蚀特征,孔隙边缘固体沥青充填;f. TL202井,5 237.8 m,泥—亮晶藻屑灰岩中的早期方解石胶结作用,孔隙被充填。
Figure 4. Types of reservoir spaces in Permian Changxing Formation of southeastern Sichuan Basin
图 5 四川盆地东南部二叠系长兴组胶结及溶蚀类型
a-b.TL202井,4 968.85 m,生物礁灰岩中生物礁格架的白云石化与粒间胶结物的白云石化;c-d.XL1井,4 605.00 m,亮晶颗粒白云岩的白云石化; e.XL1井,4 605.00 m,图 4d中部分区域,自形白云石晶体边缘被溶蚀,成港湾状;f.TL202井,4 968.85 m,晚期方解石胶结物与沥青接触边界的重晶石—白云石—方解石的矿物组合。
Figure 5. Types of cementation and dissolution in Permian Changxing Formation of southeastern Sichuan Basin
图 6 四川盆地东南部二叠系长兴组储层流体包裹体特征
a-c中实心圆点为测点位置,实心圆点颜色与图a’-c’中拉曼曲线的颜色对应。a.晚期方解石中的含沥青—甲烷包裹体;a’.含沥青包裹体的沥青与气态CH4拉曼特征峰;b.晚期方解石中富甲烷气包裹体;b’.富甲烷气包裹体中的CH4拉曼特征峰;c.晚期方解石中的含甲烷盐水包裹体;c’.含甲烷的两相盐水包裹体中气相组分中的CH4拉曼特征峰。
Figure 6. Characteristics of fluid inclusions in Permian Changxing Formation reservoirs of southeastern Sichuan Basin
表 1 四川盆地东南部二叠系长兴组碳、氧同位素分析数据
Table 1. Carbon and oxygen isotope analysis data of Permian Changxing Formation of southeastern Sichuan Basin
样品编号 分析对象 井/剖面 δ13CVPDB/‰ δ18OVPDB/‰ TL2-1-1 灰岩 TL2井 4.3 -5.6 TL2-2-1 灰岩 TL2井 4.4 -5.9 TL202-5 晚期方解石 TL202井 3.9 -6.4 FDML-2-2C1 晚期方解石 FDML古油藏剖面 -9.0 -7.5 FDML-2-2C2 晚期方解石 -1.7 -8.0 FDML-6-2 晚期方解石 -1.1 -8.4 FDML-7-2 晚期方解石 -8.0 -7.9 FDML-8-2 晚期方解石 -0.7 -13.2 FDML-8-3 晚期方解石 -6.1 -9.6 表 2 四川盆地东南部二叠系长兴组储层含甲烷盐水包裹体古温压恢复
Table 2. Reconstruction of paleo-temperature and pressure of methane-bearing aqueous inclusions in Permian Changxing Formation reservoirs of southeastern Sichuan Basin
序号 类型 室温下内压/MPa 盐度/% 捕获温度/℃ 捕获压力/MPa 备注 1 含甲烷盐水 11.09 11.17 221.0 133.15 2 含甲烷盐水 1.88 14.72 206.5 9.11 包裹体泄漏 3 含甲烷盐水 18.45 5.47 200.0 141.00 4 含甲烷盐水 20.70 3.61 191.0 197.00 5 含甲烷盐水 20.15 4.42 195.0 191.90 -
[1] 李龙龙, 罗开平, 刘栩, 等. 晚古生代构造—沉积分异对四川盆地二叠系多类型气藏的控制作用[J]. 石油实验地质, 2023, 45(1): 60-71. doi: 10.11781/sysydz202301060 LI Longlong, LUO Kaiping, LIU Xu, et al. Controlling effect of Late Paleozoic tectonic and sedimentary differentiation on multi-type gas reservoirs in Permian, Sichuan Basin[J]. Petroleum Geology & Experiment, 2023, 45(1): 60-71. doi: 10.11781/sysydz202301060 [2] 马永生, 蔡勋育, 郭旭升, 等. 普光气田的发现[J]. 中国工程科学, 2010, 12(10): 14-23.MA Yongsheng, CAI Xunyu, GUO Xusheng, et al. The discovery of Puguang Gas Field[J]. Strategic Study of CAE, 2010, 12(10): 14-23. [3] 郭旭升, 郭彤楼, 黄仁春, 等. 普光—元坝大型气田储层发育特征与预测技术[J]. 中国工程科学, 2010, 12(10): 82-90.GUO Xusheng, GUO Tonglou, HUANG Renchun, et al. Reservoir development characteristics and predication technologies of large Puguang-Yuanba Gas Field[J]. Strategic Study of CAE, 2010, 12(10): 82-90. [4] 付东阳, 汪功怀, 彭鑫岭, 等. 普光气田长兴组礁滩体精细刻画及认识[J]. 断块油气田, 2023, 30(6): 975-981.FU Dongyang, WANG Gonghuai, PENG Xinling, et al. Fine characterization and understanding of reef-shoal bodies in Changxing Formation of Puguang Gas Field[J]. Fault-Block Oil & Gas Field, 2023, 30(6): 975-981. [5] 陶夏妍, 黄天俊, 张艺华, 等. 四川盆地东北部三叠系飞仙关组迁移型鲕滩层序地层分析及相控储层预测[J]. 特种油气藏, 2023, 30(6): 62-71.TAO Xiayan, HUANG Tianjun, ZHANG yihua, et al. Sequence stratigraphical analysis and facies-controlled reservoir prediction of migratory oolitic beach in Triassic Feixianguan Formation, northeastern Sichuan Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(6): 62-71. [6] 杨伟强, 吕立爽, 周艳娜, 等. 普光地区飞仙关组台缘滩储层发育机理与差异分布规律[J]. 断块油气田, 2023, 30(6): 954-962.YANG Weiqiang, LYU Lishuang, ZHOU Yanna, et al. Development mechanism and differential distribution of platform margin shoal reservoirs of the Feixianguan Formation in Puguang area[J]. Fault-Block Oil & Gas Field, 2023, 30(6): 954-962. [7] 林雪梅, 魏全超, 郑晶, 等. 川东涪陵地区二叠系长兴组天然气气源分析[J]. 成都理工大学学报(自然科学版), 2020, 47(1): 28-34.LIN Xuemei, WEI Quanchao, DENG Jing, et al. Analysis on natural gas source of Permian Changxing Formation in Fuling area, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(1): 28-34. [8] 潘磊, 秦华, 张文睿, 等. 川东南地区二叠系—三叠系碳酸盐岩气藏气源及成因类型[J]. 断块油气田, 2022, 29(2): 245-250.PAN Lei, QIN Hua, ZHANG Wenrui, et al. Gas source and genetic types of Permian-Triassic carbonate gas reservoirs in southeast Sichuan[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 245-250. [9] 秦华, 潘磊, 徐祖新, 等. 川东南二—三叠系气藏硫化氢成因探讨[J]. 西南石油大学学报(自然科学版), 2019, 41(5): 45-55.QIN Hua, PAN Lei, XU Zuxin, et al. An investigation of the genesis of hydrogen sulfide in Permian and Triassic gas reservoirs in southeast of Sichuan Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(5): 45-55. [10] 李让彬, 唐德海. 川东兴隆场气田油气充注、聚集与调整改造过程[J]. 天然气技术与经济, 2016, 10(4): 15-18.LI Rangbin, TANG Dehai. Hydrocarbon charge and accumulation, and change process in Xinglongchang Gasfield, eastern Sichuan Basin[J]. Natural Gas Technology and Economy, 2016, 10(4): 15-18. [11] 曾婷婷, 唐德海, 郑公营. 川东南涪陵地区长兴组储层特征与形成主控因素[J]. 天然气勘探与开发, 2012, 35(4): 11-14.ZENG Tingting, TANG Dehai, ZHENG Gongying. Reservoir characteristics and its controlling factors of Changxing Formation in Fuling area, southeastern Sichuan Basin[J]. Natural Gas Exploration and Development, 2012, 35(4): 11-14. [12] 蔡希源, 郭旭升, 何治亮, 等. 四川盆地天然气动态成藏[M]. 北京: 科学出版社, 2016.CAI Xiyuan, GUO Xusheng, HE Zhiliang, et al. Dynamic accumulation of natural gas in the Sichuan Basin[M]. Beijing: Science Press, 2016. [13] 何丽娟, 许鹤华, 汪集旸. 早二叠世—中三叠世四川盆地热演化及其动力学机制[J]. 中国科学(地球科学), 2011, 41(12): 1884-1891.HE Lijuan, XU Hehua, WANG Jiyang. Thermal evolution and dynamic mechanism of the Sichuan Basin during the Early Permian-Middle Triassic[J]. Science China(Earth Sciences), 2011, 54(12): 1948-1954. [14] 刘树根, 王一刚, 孙玮, 等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报(自然科学版), 2016, 43(1): 1-23.LIU Shugen, WANG Yigang, SUN Wei, et al. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(1): 1-23. [15] 黄仁春. 四川盆地二叠纪—三叠纪开江—梁平陆棚形成演化与礁滩发育[J]. 成都理工大学学报(自然科学版), 2014, 41(4): 452-457.HUANG Renchun. Formation and evolution of Permian-Triassic Kaijiang-Liangping shelf and development of reef-shoal reservoirs in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(4): 452-457. [16] 李秋芬, 苗顺德, 王铜山, 等. 四川盆地晚二叠世克拉通内裂陷作用背景下的盐亭—潼南海槽沉积充填特征[J]. 地学前缘, 2015, 22(1): 67-76.LI Qiufen, MIAO Shunde, WANG Tongshan, et al. Sedimentary filling configuration of Yanting-Tongnan trough under the background of intracratonic rift in Later Permain, Sichuan Basin[J]. Earth Science Frontiers, 2015, 22(1): 67-76. [17] 鲁国, 何登发, 开百泽. 四川盆地构造沉降特征及成因机制分析[J]. 地质科学, 2023, 58(1): 86-104.LU Guo, HE Dengfa, KAI Baize. Tectonic subsidence characteristics of Sichuan Basin and its enlightenment to basin genesis[J]. Chinese Journal of Geology, 2023, 58(1): 86-104. [18] 吴航. 川东地区中—新生代构造隆升过程研究[D]. 北京: 中国石油大学(北京), 2019.WU Hang. Meso-Cenozoic tectonic uplift process of the eastern Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2019. [19] 黄思钦. 深层碳酸盐岩礁滩相气藏成藏过程研究: 以川东南地区长兴组为例[D]. 成都: 成都理工大学, 2021.HUANG Siqin. Gas accumulation mechanism in deep carbonate rocks of reef-beach facies: a case study of the Changxing Formation in southeastern Sichuan[D]. Chengdu: Chengdu University of Technology, 2021. [20] ZHU Dongya, LIU Quanyou, WANG Jingbin, et al. Differential fault-fluid alterations and reservoir properties in ultra-deep carbonates in the Tarim Basin, NW China[J]. Applied Geochemistry, 2024, 170: 106084. doi: 10.1016/j.apgeochem.2024.106084 [21] JIANG Lei, WORDEN R H, CAI Chunfang. Generation of isotopically and compositionally distinct water during thermochemical sulfate reduction (TSR) in carbonate reservoirs: Triassic Feixianguan Formation, Sichuan Basin, China[J]. Geochimica et Cosmochimica Acta, 2015, 165: 249-262. doi: 10.1016/j.gca.2015.05.033 [22] 陈强路, 席斌斌, 韩俊, 等. 塔里木盆地顺托果勒地区超深层油藏保存及影响因素: 来自流体包裹体的证据[J]. 中国石油勘探, 2020, 25(3): 121-133.CHEN Qianglu, XI Binbin, HAN Jun, et al. Preservation and influence factors of ultra-deep oil reservoirs in Shuntuoguole area, Tarim Basin: evidence from fluid inclusions[J]. China Petroleum Exploration, 2020, 25(3): 121-133. [23] 席斌斌, 蒋宏, 许锦, 等. 基于包裹体PVTx数值模拟恢复油藏古温压: 存在的问题、对策及应用实例[J]. 石油实验地质, 2021, 43(5): 886-895.XI Binbin, JIANG Hong, XU Jin, et al. Reconstruction of paleo-temperature and pressure of oil reservoirs based on PVTx simulation: problems, strategies and case studies[J]. Petroleum Geology & Experiment, 2021, 43(5): 886-895. [24] 刘斌, 沈昆. 流体包裹体热力学[M]. 北京: 地质出版社, 1999: 207-249.LIU Bin, SHEN Kun. Thermodynamics of fluid inclusions[M]. Beijing: Geological Publishing House, 1999: 207-249. [25] 席斌斌, 申宝剑, 蒋宏, 等. 天然气藏中CH4—H2O—NaCl体系不混溶包裹体群捕获温压恢复及应用[J]. 天然气地球科学, 2020, 31(7): 923-930.XI Binbin, SHEN Baojian, JIANG Hong, et al. The trapping temperature and pressure of CH4-H2O-NaCl immiscible fluid inclusions and its application in natural gas reservoir[J]. Natural Gas Geoscience, 2020, 31(7): 923-930. [26] BURLINSON K. Decrepitation in gold exploration. A case history from the Cotan prospect, N.T. [J]. Journal of Geochemical Exploration, 1991, 42(1): 143-156. doi: 10.1016/0375-6742(91)90064-2 [27] 徐文刚, 张德会, 席斌斌, 等. 流体包裹体爆裂法测温技术可靠性讨论: 以江西大吉山钨矿为例[J]. 现代地质, 2008, 22(5): 757-765.XU Wengang, ZHANG Dehui, XI Binbin, et al. Discussions on reliability of the decrepitation technique applied in fluid inclusion studies: taking the Jiangxi Dajishan tungsten deposit as an example[J]. Geoscience, 2008, 22(5): 757-765. [28] WANG Xiaolin, HU Wenxuan, QIU Ye, et al. Fluid inclusion evidence for extreme overpressure induced by gas generation in sedimentary basins[J]. Geology, 2022, 50(7): 765-770. doi: 10.1130/G49848.1 [29] BASSETT W A, SHEN A H, BUCKNUM M, et al. A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from -190 to 1 200 ℃[J]. Review of Scientific Instruments, 1993, 64(8): 2340-2345. doi: 10.1063/1.1143931 [30] LI Jiankang, BASSETT W A, CHOU I M, et al. An improved hydrothermal diamond anvil cell[J]. Review of Scientific Instruments, 2016, 87(5): 053108. doi: 10.1063/1.4947506 [31] 黄思静, QING Hairuo, 胡作维, 等. 四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响[J]. 沉积学报, 2007, 25(6): 815-824.HUANG Sijing, QING Hairuo, HU Zuowei, et al. Influence of sulfate reduction on diagenesis of Feixianguan carbonate in Triassic, NE Sichuan Basin of China[J]. Acta Sedimentologica Sinica, 2007, 25(6): 815-824. [32] 李开开, 蔡春芳, 姜磊, 等. 川东北地区长兴组酸性气藏中硫化氢来源及成因[J]. 石油与天然气地质, 2015, 36(2): 183-192.LI Kaikai, CAI Chunfang, JIANG Lei, et al. Origin of H2S in sour gas reservoirs in the Upper Permian Changxing Formation in northeastern Sichuan Basin[J]. Oil & Gas Geology, 2015, 36(2): 183-192. -