Magnesian clay minerals and their influence on pores in the first member of Middle Permian Maokou Formation, southern Sichuan Basin
-
摘要: 近年来,四川盆地多口井在中二叠统茅口组一段(茅一段)(含)泥灰岩地层中钻获工业气流,展示出良好的勘探潜力。早期研究认为,茅一段(含)泥灰岩具有自生自储的特征,是一套低孔、低渗的裂缝—孔隙型致密碳酸盐岩储层,储集空间多样,海泡石向滑石转化过程中形成的成岩收缩孔缝对储集空间贡献较大。为进一步探讨茅一段黏土矿物的成因及其储集意义,采集川南6口钻井和1条野外剖面的茅一段岩样,通过显微镜、氩离子电镜、X射线衍射(XRD)、主微量元素、锶同位素(87Sr/86Sr)、孔隙度、氮气吸附等实验手段,对茅一段(含)泥灰岩中黏土矿物进行研究。镜下观察与XRD结果显示,川南茅一段黏土矿物多以基质、不规则斑块(点)状和交代钙质生物壳体等形式产出,以滑石、富镁蒙脱石等镁质黏土矿物为主,含少量海泡石。此外,茅一段(含)泥灰岩的Al2O3含量、ΣREE含量较低,Y/Ho比值和87Sr/86Sr值类似于同期海水,表明陆源输入的碎屑少,茅一段镁质黏土矿物最初(海泡石阶段)为沉积—早成岩期形成的自生黏土。茅一段储层的孔隙度/孔容与黏土矿物总量、富镁蒙脱石含量呈正相关,与滑石含量无明显相关性,甚至轻微负相关,表明川南茅一段泥灰岩储层的储集空间受黏土总含量及成岩演化阶段影响。孔隙空间整体随黏土含量增多而增大,热演化处于成熟—高成熟阶段,黏土矿物以富镁蒙脱石为主时,黏土孔缝发育,储集物性好;过高的成岩演化(热演化处于过成熟阶段,滑石化程度高)不利于孔隙的发育。Abstract: In recent years, multiple wells in the Sichuan Basin have produced industrial gas from the marlstone/marl-bearing limestone strata in the first member of the Middle Permian Maokou Formation (Mao 1), demonstrating promising exploration potential. Previous studies have suggested that the marlstone/marl-bearing limestone in Mao 1 exhibits self-generation and self-storage characteristics, forming low-porosity, low-permeability fracture-porosity type tight carbonate reservoirs with diverse storage spaces. Notably, diagenetic shrinkage pores and fractures formed during the transformation of sepiolite to talc contribute significantly to the storage space. To further investigate the genesis of clay minerals in Mao 1 and their significance for reservoir storage, rock samples were collected from six wells and one outcrop in the southern Sichuan Basin. A series of analyses, including microscopy, argon ion microscopy, X-ray diffraction (XRD), major and trace element analysis, strontium isotopic ratios (87Sr/86Sr), porosity tests, and nitrogen (N2) adsorption experiments, were conducted to study the characteristics of clay minerals in the marlstone/marl-bearing limestone of Mao 1. Microscopic observations and XRD results showed that the clay minerals mainly occurred as matrix minerals, irregular patches/spots, and replacements of biogenic calcareous shells. These minerals were primarily magnesian clay minerals such as talc and magnesium-rich montmorillonite, with minor amounts of sepiolite. Additionally, the marlstone/marl-bearing limestone in Mao 1 had relatively low Al2O3 contents and ΣREE concentrations, and its Y/Ho ratios and 87Sr/86Sr values resembled those of contemporaneous seawater, indicating limited terrigenous clastic input. This suggested that the magnesian clay minerals were originally authigenic clays formed during the deposition-early diagenesis period (in the sepiolite stage). The porosity/pore volume of the reservoir was positively correlated with the total clay mineral content and the magnesium-rich montmorillonite content, but no significant correlation or even a slight negative correlation was observed with the talc content. This indicated that the storage space in the marlstone reservoir was affected by the total clay content and the diagenetic evolution stage. The overall pore space increased with higher clay content. When thermal evolution was at the mature to highly mature stage and magnesium-rich montmorillonite was dominant, clay pores and fractures were developed, enhancing reservoir properties. However, excessive diagenetic evolution (over-mature thermal stage with higher talc content) was unfavorable for pore development.
-
图 3 川南中二叠统茅口组一段黏土矿物主要赋存形式
a, b.露头照片,黏土矿物呈条带状(a)和眼皮状(b);c-f.岩心照片,黏土矿物呈眼皮状(c)、不规则斑块状(d)、星点状(e)和交代生物壳体(f);g-i.显微镜下照片,黏土矿物交代有孔虫壳体(g),条带状顺层分布(h)和星点状(i);j-l.氩离子抛光电镜照片,黏土矿物交代有孔虫(j),呈片状集合体(k)和与方解石、石英等矿物共生(l)。
Figure 3. Major occurrence forms of clay minerals in the first member of Middle Permian Maokou Formation, southern Sichuan Basin
表 1 川南中二叠统茅口组一段碳酸盐岩样品主、微量元素含量
Table 1. Major and trace element contents in carbonate rock samples from the first member of Middle Permian Maokou Formation, southern Sichuan Basin
样品编号 Al2O3/% MgO/% Y/10-6 Y/Ho ΣREE/10-6 样品编号 Al2O3/% MgO/% Y/10-6 Y/Ho ΣREE/10-6 SW1 0.31 0.56 1.39 36.58 9.11 A4-30 0.44 9.04 0.94 42.93 5.40 SW2 1.57 2.69 2.72 43.17 11.35 A4-31 0.14 16.38 0.65 50.87 1.90 SW3 0.69 7.74 2.42 46.54 10.16 A4-34 0.08 1.97 1.43 65.28 1.75 SW4 0.22 0.54 1.37 38.06 8.20 A4-35 0.49 4.46 2.35 48.51 5.38 SW5 2.00 6.66 4.27 30.50 32.29 A4-37 0.65 7.77 4.82 50.13 8.47 SW6 0.28 1.85 1.70 35.42 13.41 A4-39 0.06 1.55 1.28 65.46 1.29 SW7 0.34 5.97 1.38 39.43 6.43 A4-40 0.21 4.89 1.69 60.70 2.55 A4-2 0.79 15.49 2.90 38.08 9.78 A4-42 0.11 1.59 1.15 69.58 1.27 A4-3 0.13 1.43 1.62 43.65 6.19 A4-43 0.34 1.74 1.55 49.59 5.00 A4-4 0.46 10.93 1.59 48.82 4.87 A4-44 0.20 0.93 0.52 48.97 2.44 A4-5 0.16 1.28 2.66 43.26 6.48 A4-45 0.05 0.47 0.22 61.81 0.49 A4-6 0.44 5.02 3.62 43.94 7.43 A4-46 0.11 0.89 0.43 53.19 1.19 A4-8 0.29 8.81 3.38 49.09 4.33 A4-47 0.08 0.68 0.50 58.58 1.26 A4-9 0.13 8.06 1.98 43.17 2.42 A4-48 0.07 0.77 0.35 68.92 0.87 A4-10 0.27 16.11 1.52 42.36 3.28 A4-49 0.11 0.62 0.78 60.49 2.25 A4-11 0.46 11.38 2.27 39.49 5.70 A4-50 0.11 0.65 0.64 46.53 5.51 A4-12 0.35 8.22 1.48 34.97 4.99 A4-51 0.10 1.18 1.03 57.88 2.85 A4-13 0.29 12.95 2.80 34.44 7.25 A4-52 0.13 0.89 1.01 69.36 3.02 A4-14 0.07 1.40 4.93 61.88 3.80 A4-53 0.29 5.99 1.01 48.05 3.51 A4-15 0.08 0.99 0.87 53.09 1.88 A4-54 0.41 3.04 1.10 55.45 3.86 A4-16 0.30 1.24 1.23 55.54 2.64 A6-2 0.26 7.83 1.33 42.90 4.64 A4-17 0.10 1.11 0.77 61.02 1.18 A6-4 0.45 4.00 1.92 49.23 3.87 A4-18 0.13 1.21 1.32 60.36 1.60 A6-7 0.85 17.95 3.75 40.76 12.12 A4-19 0.32 14.01 1.83 54.86 2.37 A6-9 0.43 10.23 1.59 41.84 7.20 A4-21 0.13 1.77 1.42 63.67 1.25 A6-11 0.16 1.68 0.51 42.67 1.99 A4-22 0.13 1.35 1.09 66.81 1.32 A6-14 1.10 3.65 2.05 45.56 4.83 A4-23 0.19 1.64 3.01 62.07 2.60 A6-15 0.37 11.92 0.65 40.69 2.98 A4-24 0.53 7.26 2.36 48.28 7.22 A6-18 0.70 5.32 1.74 37.02 11.29 A4-25 0.05 1.10 0.56 71.12 0.61 A6-25 0.73 22.00 1.17 37.74 0.73 A4-26 0.17 2.78 1.17 61.55 1.56 A6-32 0.21 2.63 1.24 47.69 2.85 A4-27 0.18 3.12 2.15 75.16 1.46 A6-36 0.28 2.77 1.07 53.50 2.75 A4-28 0.30 3.45 1.38 60.84 3.33 A6-38 0.27 6.06 1.70 68.00 3.09 A4-29 0.29 6.46 0.97 54.19 3.22 表 2 川南中二叠统茅口组一段泥灰岩样品锶同位素值
Table 2. Strontium isotopic ratios of marlstone samples from the first member of Middle Permian Maokou Formation, southern Sichuan Basin
样品编号 碳酸盐组分 泥质组分 样品编号 碳酸盐组分 泥质组分 87Sr/86Sr 1SE 87Sr/86Sr 1SE 87Sr/86Sr 1SE 87Sr/86Sr 1SE SW1 0.707 446 0.000 004 0.707 622 0.000 005 A4-3 0.707 034 0.000 005 0.707 117 0.000 004 SW2 0.707 203 0.000 005 0.709 732 0.000 005 A4-4 0.707 142 0.000 014 0.707 249 0.000 005 A1-2 0.707 106 0.000 006 0.707 088 0.000 005 A4-15 0.707 118 0.000 006 0.707 119 0.000 005 A1-3 0.707 089 0.000 006 0.707 154 0.000 004 A4-16 0.707 097 0.000 006 0.707 134 0.000 005 A1-10 0.707 111 0.000 005 0.707 192 0.000 005 A4-23 0.707 063 0.000 005 0.707 176 0.000 005 A1-15 0.707 187 0.000 005 0.707 210 0.000 005 A4-24 0.707 070 0.000 006 0.707 059 0.000 004 -
[1] 马永生, 蔡勋育, 赵培荣, 等. 四川盆地大中型天然气田分布特征与勘探方向[J]. 石油学报, 2010, 31(3): 347-354.MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al. Distribution and further exploration of the large-medium sized gas fields in Sichuan Basin[J]. Acta Petrolei Sinica, 2010, 31(3): 347-354. [2] 钟佳倚, 王尉, 刘冉, 等. 川东地区茅口组储层特征及主控因素[J]. 断块油气田, 2024, 31(2): 308-318.ZHONG Jiaqi, WANG Wei, LIU Ran, et al. Characteristics and main controlling factors of reservoirs of Maokou Formation in eastern Sichuan Basin[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 308-318. [3] 杨浩, 潘磊, 全力, 等. 川东南地区中二叠统茅口组三段白云岩成因机理[J]. 石油实验地质, 2024, 46(2): 311-318.YANG Hao, PAN Lei, QUAN Li, et al. Genetic mechanism of dolomite in third member of Maokou Formation in Middle Permian, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(2): 311-318. [4] 李素华. 川中资阳地区茅口组岩溶储层识别模式及分布预测[J]. 断块油气田, 2023, 30(4): 648-655.LI Suhua. Recognition mode and distribution prediction of Maokou Formation karst reservoir in Ziyang area, central Sichuan Basin[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 648-655. [5] 周进高, 郝毅, 邓红婴, 等. 四川盆地中西部栖霞组—茅口组孔洞型白云岩储层成因与分布[J]. 海相油气地质, 2019, 24(4): 77-88.ZHOU Jin'gao, HAO Yi, DENG Hongying, et al. Lithofacies palaeogeography and favorable gas exploration zones of Qixia and Maokou formations in the Sichuan Basin[J]. Marine Origin Petroleum Geology, 2019, 36(4): 77-88. [6] 赵培荣. 焦石坝地区茅一段储层特征及天然气勘探潜力[J]. 油气藏评价与开发, 2021, 11(5): 772-781.ZHAO Peirong. Reservoir characteristics and gas exploration potential of Permian Mao-1 member of Maokou Formation in Jiaoshiba Area[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 772-781. [7] 宋金民, 王佳蕊, 刘树根, 等. 含海泡石层系泥质灰岩中自生黏土矿物的类型、组成与成岩演化过程: 以川东地区中二叠统茅口组茅一段为例[J]. 石油勘探与开发, 2024, 51(2): 311-322.SONG Jinmin, WANG Jiarui, LIU Shugen, et al. Types, composition and diagenetic evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata: a case study of Mao-1 member of Middle Permian Maokou Formation, eastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2024, 51(2): 311-322. [8] 王茂桢, 柳少波, 任拥军, 等. 页岩气储层粘土矿物孔隙特征及其甲烷吸附作用[J]. 地质论评, 2015, 61(1): 207-216.WANG Maozhen, LIU Shaobo, REN Yongjun, et al. Pore characteristics and methane adsorption of clay minerals in shale gas reservoir[J]. Geological Review, 2015, 61(1): 207-216. [9] 赵杏媛, 何东博. 黏土矿物与页岩气[J]. 新疆石油地质, 2012, 33(6): 643-647.ZHAO Xingyuan, HE Dongbo. Clay minerals and shale gas[J]. Xinjiang Petroleum Geology, 2012, 33(6): 643-647. [10] 李蓉, 苏成鹏, 石国山, 等. 川南地区二叠系茅口组一段瘤状灰岩储层成因[J]. 天然气地球科学, 2021, 32(6): 806-815.LI Rong, SU Chengpeng, SHI Guoshan, et al. The genesis of nodular limestone reservoirs of the first period of Maokou Formation of Permian in southern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(6): 806-815. [11] 刘瑾, 夏文谦, 李晶晶, 等. 川东南地区茅一段储层特征分析[J]. 科技通报, 2019, 35(7): 26-32.LIU Jin, XIA Wenqian, LI Jingjing, et al. Analysis of reservoir characteristics of the first member of Maokou Formation in southeastern Sichuan Basin[J]. Bulletin of Science and Technology, 2019, 35(7): 26-32. [12] 夏威, 蔡潇, 丁安徐, 等. 南川地区栖霞—茅口组碳酸盐岩储集空间研究[J]. 油气藏评价与开发, 2021, 11(2): 197-203.XIA Wei, CAI Xiao, DING Anxu, et al. Reservoir spaces of carbonate rocks in Qixia-Maokou formation of Nanchuan area[J]. Reservoir Evaluation and Development, 2021, 11(2): 197-203. [13] 韩月卿, 李双建, 韩文彪, 等. 川东南地区中二叠统茅口组灰泥灰岩储层孔隙特征[J]. 石油实验地质, 2022, 44(4): 666-676.HAN Yueqing, LI Shuangjian, HAN Wenbiao, et al. Pore characteristics of marl reservoir in Maokou Formation of Middle Permian, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 22(4): 666-676. [14] 任海侠, 林小兵, 刘叶, 等. 川西南二叠系茅口组一段滑石特征及其形成机理: 以A1井茅一段样品为例[J]. 石油实验地质, 2021, 43(6): 1038-1047.REN Haixia, LIN Xiaobing, LIU Ye, et al. Characteristics and formation mechanism of talc in Permian Maokou Formation, southwestern Sichuan Basin: a case study of first member of Maokou Formation in well A[J]. Petroleum Geology & Experiment, 2021, 43(6): 1038-1047. [15] 李蓉, 宋晓波, 苏成鹏, 等. 川南威远地区二叠系茅口组一段泥灰岩储层特征及其发育主控因素[J]. 石油实验地质, 2024, 46(5): 1028-1038. doi: 10.11781/sysydz2024051028LI Rong, SONG Xiaobo, SU Chengpeng, et al. Characteristics and main controlling factors of the marlstone reservoirs of the first member of Permian Maokou Formatin in Weiyuan area, southern Sichuan Basin[J]. Petroeum Geology & Experiment, 2024, 46(5): 1028-1038. doi: 10.11781/sysydz2024051028 [16] 颜佳新, 张宽忠, CARLSON E H. 华南地区栖霞组"菊花石"假象与海泡石矿成因关系探讨[J]. 矿物岩石, 2000, 20(4): 1-5.YAN Jiaxin, ZHANG Kuanzhong, CARLSON E H. Remarks on origin of sepiolite with evidences from replacement history of nodular celestite in the Chihsia Formation of South China[J]. Journal of Mineralogy and Petrology, 2000, 20(4): 1-5. [17] 杨瑞士, 李文光. 我国海泡石矿床成矿条件及成因类型初探[J]. 化工矿产地质, 2001, 23(1): 25-30.YANG Ruishi, LI Wenguang. Ore-forming conditions and genetic types of sepiolite deposits in China[J]. Geology of Chemical Minerals, 2001, 23(1): 25-30. [18] YAN Jiaxin, MUNNECKE A, STEUBER T, et al. Marine sepiolite in Middle Permian carbonates of South China: implications for secular variation of phanerozoic seawater chemistry[J]. Journal of Sedimentary Research, 2005, 75(3): 328-338. doi: 10.2110/jsr.2005.026 [19] YENI'YOL M. Geology and mineralogy of a sepiolite-palygorskite occurrence from SW Eskişehir (Turkey)[J]. Clay Minerals, 2012, 47(1): 93-104. doi: 10.1180/claymin.2012.047.1.93 [20] 杨振强, 陈善庆, 许俊文. 萍乐坳陷早二叠世海相海泡石矿物相转化的地质找矿意义[J]. 沉积学报, 1988, 6(1): 88-96.YANG Zhenqiang, CHEN Shanqing, XU Junwen. Geological and prospective significance of the Early Permian, marine sepiolite-phase transformation in Pingxian-Leping Depression[J]. Acta Sedimentological Sinica, 1988, 6(1): 88-96. [21] 章人骏, 杨振强. 中国海泡石的产状和成因[J]. 中国地质科学院院报, 1987(1): 45-51.ZHANG Renjun, YANG Zhenqiang. Occurrence and distribution of sepiolite in China[J]. Bulletin of the Chinese Academy of Geological Sciences, 1987(1): 45-51. [22] CAI Zhongxian, LI Jie, CHEN Haoru, et al. Genesis of Mg-phyllosilicate occurrences in the Middle Permian marine successions of South China[J]. Applied Clay Science, 2019, 181: 105242. doi: 10.1016/j.clay.2019.105242 [23] ZHANG Bolin, YAO Suping, WIGNALL P B, et al. Widespread coastal upwelling along the eastern Paleo-Tethys margin (South China) during the Middle Permian (Guadalupian): implications for organic matter accumulation[J]. Marine and Petroleum Geology, 2018, 97: 113-126. doi: 10.1016/j.marpetgeo.2018.06.025 [24] 范建平, 宋金民, 刘树根, 等. 四川盆地中二叠统茅一段灰岩—泥质灰岩韵律层古温度演化及驱动机制[J]. 石油实验地质, 2023, 45(4): 726-738.FAN Jianping, SONG Jinmin, LIU Shugen, et al. Paleotemperature evolution and its driving mechanism during the formation of limestone-marl alternations in first member of Middle Permian Maokou Formation in Sichuan Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 726-738. [25] 刘树根, 邓宾, 孙玮, 等. 四川盆地是"超级"的含油气盆地吗?[J]. 西华大学学报(自然科学版), 2020, 39(5): 20-35.LIU Shugen, DENG Bin, SUN Wei, et al. May Sichuan Basin be a super petroliferous basin?[J]. Journal of Xihua University(Natural Science Edition), 2020, 39(5): 20-35. [26] 郝毅, 姚倩颖, 田瀚, 等. 四川盆地二叠系茅口组沉积特征及储层主控因素[J]. 海相油气地质, 2020, 25(3): 202-209.HAO Yi, YAO Qianying, TIAN Han, et al. Sedimentary characteristics and reservoir-controlling factors of the Permian Maokou Formation in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2020, 25(3): 202-209. [27] 赵宗举, 周慧, 陈轩, 等. 四川盆地及邻区二叠纪层序岩相古地理及有利勘探区带[J]. 石油学报, 2012, 33(S2): 35-51.ZHAO Zongju, ZHOU Hui, CHEN Xuan, et al. Sequence lithofacies paleogeography and favorable exploration zones of the Permian in Sichuan Basin and adjacent areas, China[J]. Acta Petrolei Sinica, 2012, 33(S2): 35-51. [28] 张培先, 何希鹏, 高全芳, 等. 四川盆地东南缘二叠系茅口组一段页岩气藏地质特征及富集模式[J]. 石油与天然气地质, 2021, 42(1): 146-157.ZHANG Peixian, HE Xipeng, GAO Quanfang, et al. Geological characteristics and enrichment pattern of Permian Mao 1 Member shale gas reservoirs at the southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 146-157. [29] 郭彤楼. 四川盆地碳酸盐岩源岩气地质特征与勘探前景[J]. 西南石油大学学报(自然科学版), 2021, 43(1): 1-16.GUO Tonglou. Geological characteristics and exploration prospect of carbonate source rock gas in Sichuan Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(1): 1-16. [30] WEIS D, KIEFFER B, MAERSCHALK C, et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08006. [31] 苏成鹏, 李飞, 谭秀成, 等. 古代碳酸盐岩台地自生泥质组分成因及意义: 以上寺剖面中二叠统茅口组为例[J]. 沉积学报, 2021, 39(3): 550-570.SU Chengpeng, LI Fei, TANG Xiucheng, et al. Origin and significance of authigenic argillaceous components on the ancient carbonate platform: a case study from the Maokou Formation of the Middle Permian at the Shangsi section, Guangyuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 550-570. [32] 陈芸菁, 王佩英, 任磊夫. 海泡石在成岩作用过程中向滑石转化的研究[J]. 科学通报, 1985, 30(4): 284-287.CHEN Yunjing, WANG Peiying, REN Leifu. Transformation of sepiolite into talc during diagenesis[J]. Chinese Science Bulletin, 1985, 30(4): 284-287. [33] 李旭平, 朱钟秀. 浏阳永和海泡石矿床中海泡石向滑石转变的矿物学研究[J]. 长春地质学院学报, 1993, 23(2): 151-154.LI Xuping, ZHU Zhongxiu. Mineralogical study on transformation from sepiolite to talc at Yonghe sepiolite deposit in Liuyang district[J]. Journal of Changchun University of Earth Science, 1993, 23(2): 151-154. [34] 刘红光, 刘波. 显生宙碳酸盐岩中燧石结核的几种成因模式[J]. 地质通报, 2017, 36(9): 1635-1644.LIU Hongguang, LIU Bo. Several genetic models of nodular chert hosted in Phanerozoic carbonate[J]. Geological Bulletin of China, 2017, 36(9): 1635-1644. [35] BALDERMANN A, MAVROMATIS V, FRICK P M, et al. Effect of aqueous Si/Mg ratio and pH on the nucleation and growth of sepiolite at 25℃[J]. Geochimica et Cosmochimica Acta, 2018, 227: 211-226. doi: 10.1016/j.gca.2018.02.027 [36] 颜佳新, 伍明. 显生宙海水成分碳酸盐沉积和生物演化系统研究进展[J]. 地质科技情报, 2006, 25(3): 1-7.YAN Jiaxin, WU Ming. Synchronized osciliations in phanerozoic chemical composition of seawater, carbonate sedimentation and biotic evolution: progresses and prospects[J]. Geological Science and Technology Information, 2006, 25(3): 1-7. [37] 杨雪, 田寒云, 杨雨然, 等. 川东北二叠系海相页岩硅质矿物成因机理[J]. 山东科技大学学报(自然科学版), 2024, 43(5): 35-43.YANG Xue, TIAN Hanyun, YANG Yuran, et al. Genetic mechanism of siliceous minerals in Permian marine shales in northeast Sichuan[J]. Journal of Shandong University of Science and Technology(Natural Sciences), 2024, 43(5): 35-43. [38] GAO Ping, HE Zhiliang, LASH G G, et al. Mixed seawater and hydrothermal sources of nodular chert in Middle Permian limestone on the eastern Paleo-Tethys margin (South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 551: 109740. doi: 10.1016/j.palaeo.2020.109740 [39] ZHAO Mingyu, ZHENG Yongfei. Marine carbonate records of terrigenous input into Paleotethyan seawater: geochemical constraints from Carboniferous limestones[J]. Geochimica et Cosmochimica Acta, 2014, 141: 508-531. doi: 10.1016/j.gca.2014.07.001 [40] TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262 [41] TOSTEVIN R, SHIELDS G A, TARBUCK G M, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology, 2016, 438: 146-162. doi: 10.1016/j.chemgeo.2016.06.027 [42] 常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91-99.CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99. [43] BAYON G, TOUCANNE S, SKONIECZNY C, et al. Rare earth elements and neodymium isotopes in world river sediments revisited[J]. Geochimica et Cosmochimica Acta, 2015, 170: 17-38. doi: 10.1016/j.gca.2015.08.001 [44] DUDÁS F Ö, YUAN Dongxun, SHEN Shuzhong, et al. A conodont-based revision of the 87Sr/86Sr seawater curve across the Permian-Triassic boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 470: 40-53. doi: 10.1016/j.palaeo.2017.01.007 [45] JOHN E H, CLIFF R, WIGNALL P B. A positive trend in seawater 87Sr/86Sr values over the Early-Middle Frasnian boundary (Late Devonian) recorded in well-preserved conodont elements from the Holy Cross mountains, Poland[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 269(3/4): 166-175. [46] PALMER M R, EDMOND J M. The strontium isotope budget of the modern ocean[J]. Earth and Planetary Science Letters, 1989, 92(1): 11-26. doi: 10.1016/0012-821X(89)90017-4 [47] JONES C E, JENKYNS H C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous[J]. American Journal of Science, 2001, 301(2): 112-149. doi: 10.2475/ajs.301.2.112 [48] KORTE C, JASPER T, KOZUR H W, et al. 87Sr/86Sr record of Permian seawater[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 89-107. [49] HU Dongfeng F, WANG Liangjun, ZHANG Hanrong, et al. Discovery of carbonate source rock gas reservoir and its petroleum geological implications: a case study of the gas reservoir in the first member of Middle Permian Maokou Formation in the Fuling area, Sichuan Basin[J]. Natural Gas Industry B, 2021, 8(1): 13-23. doi: 10.1016/j.ngib.2020.07.001 [50] 宋金民, 刘树根, 金鑫, 等. 四川盆地中二叠统含海泡石层系源储组合新模式及其油气勘探新领域[J]. 成都理工大学学报(自然科学版), 2022, 49(2): 129-149.SONG Jinmin, LIU Shugen, JIN Xin, et al. A new model of source-reservoir association and new fields of oil and gas exploration in the Middle Permian sepiolite bearing strata, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(2): 129-149. [51] WANG Zhanghu, MA Zhongliang, ZHENG Lunju, et al. Dynamic evolution characteristics of the "source-reservoir" integration of gray marl and its geological significance to unconventional gas: insights from pyrolysis experiments[J]. Petroleum Science, 2023, 20(2): 705-720. doi: 10.1016/j.petsci.2023.01.004 [52] 江青春, 汪泽成, 苏旺, 等. 四川盆地中二叠统茅口组一段泥灰岩源内非常规天然气成藏条件及有利勘探方向[J]. 中国石油勘探, 2021, 26(6): 82-97.JIANG Qingchun, WANG Zecheng, SU Wang, et al. Accumulation conditions and favorable exploration orientation of unconventional natural gas in the marl source rock of the first member of the Middle Permian Maokou Formation, Sichuan Basin[J]. China Petroleum Exploration, 2021, 26(6): 82-97. [53] 陈善庆, 杨振强, 林金明. 试论"江南古陆"两侧二叠纪煤变质作用与海泡石成矿作用的关系[J]. 地球学报, 1991, 12(3).CHEN Shanqing, YANG Zhenqiang, LIN Jinming. Discussion on the relationship between Permian coal metamorphise and sepiolite mineralization beside the "Jiangnan Oldland"[J]. Acta Geoscientica Sinica, 1991, 12(3). -