Isotope stratigraphy of Yurtus Formation in Keping area, Tarim Basin: chemical stratigraphic correlation and age constraints based on Carbon and Strontium isotopes
-
摘要: 新元古代晚期—寒武纪早期是地质历史上的关键时期。新疆塔里木盆地柯坪地区埃迪卡拉系—寒武系地层出露较好,但化学地层学研究还相对薄弱。选取了新疆塔里木盆地柯坪地区的肖尔布拉克西沟和昆盖阔坦剖面下寒武统玉尔吐斯组碳酸盐岩为研究对象,通过碳、锶同位素的地球化学研究进行化学地层学的区域地层对比以及全球地层对比,限定了玉尔吐斯组地层的形成时代。样品的δ13Ccarb—δ18Ocarb关系性图、δ18Ocarb、Mn/Sr等地球化学特征表明,绝大多数样品的δ13Ccarb、87Sr/86Sr未受到后期成岩作用的改造,保留了沉积时的海水特征。样品的87Sr/86Sr与Sr含量、Rb含量的关系图显示溶样过程中没有大量硅酸盐组分的加入。无机碳同位素结果显示,两个剖面玉尔吐斯组碳酸盐岩中记录了两次碳同位素负漂移事件,分别位于灰岩—页岩互层段底部和上部泥质灰岩段,并能够与柯坪地区其他剖面进行对比。玉尔吐斯组碳酸盐岩87Sr/86Sr表现出“先下降,后上升”的变化特征,可以与摩洛哥地区和西伯利亚东南部地区的87Sr/86Sr在托莫特阶的变化对应。在玉尔吐斯组内未识别出全球碳同位素正异常ZHUCE事件,结合87Sr/86Sr变化特征和古生物资料,认为玉尔吐斯组内存在沉积间断并导致第二阶中下部地层的缺失。通过碳、锶同位素地层对比并结合前人研究资料,认为玉尔吐斯组中部白云岩段位于幸运阶与第二阶界限附近,灰岩—页岩互层段直到玉尔吐斯组顶部属于第二阶晚期到第三阶早期。Abstract: The Late Neoproterozoic to Early Cambrian represents a critical period in geological history. In the Keping area of the Tarim Basin, Xinjiang, the Ediacaran to Cambrian strata are well-exposed, but research on chemostratigraphy is relatively limited. This study selected the Lower Cambrian Yurtus Formation in the Xiaoerbulake Xigou and Kungaikuotan sections in the Keping area as the research subject. Carbon and Strontium isotope geochemistry were used to establish regional and global stratigraphic correlations and constrain the depositional age of the Yurtus Formation. The geochemical characteristics of the samples, including δ13Ccarb-δ18Ocarb crossplots, δ18Ocarb, and Mn/Sr ratios, confirmed that the δ13Ccarb and 87Sr/86Sr of most samples were not altered by later diagenesis and preserved the seawater characteristics at the time of deposition. Crossplots of 87Sr/86Sr versus Sr content and Rb content of the samples indicated that there was no significant addition of silicate components during the dissolution process. The inorganic carbon isotope results showed that two negative carbon isotope excursions were recorded in the carbonates from the Yurtus Formation in both sections, located at the base of limestone and shale interbeds and in the upper argillaceous limestone member, respectively, which could be correlated with other sections in the Keping area. The 87Sr/86Sr ratios of Yurtus Formation carbonates exhibited a "decline-rise" pattern, which could be correlated with the 87Sr/86Sr variations in the Tommotian Stage of Morocco and southeastern Siberia. The global positive carbon isotope excursion ZHUCE event was not identified within the Yurtus Formation. Combined with 87Sr/86Sr variation characteristics and paleontological data, it is inferred that there was a sedimentary hiatus within the formation, resulting in the absence of the middle and lower Stage 2 strata. Based on carbon and strontium isotope stratigraphic correlations combined with previous studies, it is concluded that the middle dolomite member of the Yurtus Formation lies near the Fortunian and Stage 2 boundary, and the upper limestone and shale interbeds to the top of the Yurtus Formation belong to the late Stage 2 and early Stage 3 of the Cambrian.
-
Key words:
- carbon isotope /
- strontium isotope /
- stratigraphic correlation /
- Yurtus Formation /
- Tarim Basin
-
图 1 塔里木盆地北缘柯坪地区地质概况
根据参考文献[37]修改。
Figure 1. Geological sketch map of Keping area in northern Tarim Basin
图 8 塔里木盆地柯坪地区剖面间玉尔吐斯组δ13Ccarb、87Sr/86Sr地层横向对比
a.全球海水锶同位素曲线;b.肖西沟剖面;c.昆盖阔坦剖面;d.全球海水碳同位素曲线[17]。相同颜色区域/边框代表可相互对比。
Figure 8. δ13Ccarb and 87Sr/86Sr stratigraphic correlation in Yurtus Formation between sections in Keping area, Tarim Basin
表 1 塔里木盆地柯坪地区肖西沟剖面玉尔吐斯组碳酸盐岩同位素和元素含量
Table 1. Isotope and element contents of carbonates from Yurtus Formation in Xiaoxigou section, Keping area, Trim Basin
样品号 地层 岩性 高度/cm δ13Ccarb/‰ δ18Ocarb/‰ 87Sr/86Sr ±σ Ca/% Mg/% Mn/(μg/g) Rb/(μg/g) Sr/(μg/g) Mn/Sr xxg1-6 玉尔吐斯组 白云岩 500 -0.48 -9.67 22.11 12.78 843.59 0.29 91.64 9.21 xxg-1-7 玉尔吐斯组 白云岩 540 -0.35 -8.00 0.709 212 0.000 010 21.96 12.88 849.41 0.35 69.50 12.22 xxg-1-8 玉尔吐斯组 白云岩 570 -0.20 -9.25 22.07 12.81 743.13 0.19 130.51 5.69 xxg-1-9 玉尔吐斯组 白云岩 590 -1.21 -9.51 22.63 12.40 821.71 0.16 212.74 3.86 xxg-1-10 玉尔吐斯组 白云岩 610 -0.69 -9.22 23.00 12.15 673.42 0.37 80.97 8.32 xxg-2-1 玉尔吐斯组 灰岩 625 -3.25 -9.20 0.708 565 0.000 009 39.58 0.30 324.12 0.28 319.58 1.01 xxg-2-2 玉尔吐斯组 灰岩 805 -3.81 -7.99 0.708 817 0.000 010 39.62 0.27 283.40 0.22 365.13 0.78 xxg-2-3 玉尔吐斯组 灰岩 815 -3.66 -7.72 0.708 258 0.000 009 39.66 0.24 216.34 0.18 439.21 0.49 xxg-2-4 玉尔吐斯组 灰岩 830 -3.73 -8.32 0.708 454 0.000 010 39.53 0.34 408.82 0.30 301.11 1.36 xxg-2-5 玉尔吐斯组 灰岩 845 -3.50 -7.84 0.708 342 0.000 012 39.56 0.31 385.36 0.21 303.92 1.27 xxg-2-6 玉尔吐斯组 灰岩 855 -3.35 -8.32 0.708 523 0.000 008 39.53 0.33 362.03 0.30 341.94 1.06 xxg-2-7 玉尔吐斯组 灰岩 870 -6.66 -9.88 0.708 356 0.000 006 39.52 0.34 232.91 0.31 318.18 0.73 xxg-2-8 玉尔吐斯组 灰岩 900 -3.11 -7.92 0.708 369 0.000 007 39.00 0.72 685.15 0.19 301.14 2.28 xxg-2-9 玉尔吐斯组 灰岩 925 -3.54 -7.93 0.708 378 0.000 009 39.65 0.25 429.30 0.26 337.03 1.27 xxg-2-10 玉尔吐斯组 灰岩 960 -3.25 -8.74 39.50 0.36 530.08 0.31 405.77 1.31 xxg-2-11 玉尔吐斯组 灰岩 975 -3.35 -8.13 0.708 783 0.000 006 39.56 0.32 1 576.10 0.29 243.90 6.46 xxg-2-12 玉尔吐斯组 灰岩 985 -8.88 -8.16 39.81 0.14 522.44 0.18 174.26 3.00 xxg-2-13 玉尔吐斯组 灰岩 1 015 -4.04 -7.77 0.708 567 0.000 005 39.62 0.27 734.81 0.28 239.30 3.07 xxg-2-14 玉尔吐斯组 灰岩 1 030 -2.90 -8.00 39.54 0.33 798.17 0.22 265.42 3.01 xxg-2-15 玉尔吐斯组 灰岩 1 040 -3.11 -7.77 39.58 0.30 601.21 0.23 304.54 1.97 xxg-2-16 玉尔吐斯组 灰岩 1 050 -2.34 -8.10 0.708 285 0.000 004 39.53 0.34 370.20 0.20 406.07 0.91 xxg-2-18 玉尔吐斯组 灰岩 1 100 -2.26 -8.04 0.708 507 0.000 006 39.59 0.29 319.46 0.22 464.30 0.69 xxg-2-19 玉尔吐斯组 灰岩 1 110 -2.92 -7.94 39.49 0.36 311.61 0.26 394.53 0.79 xxg-2-20 玉尔吐斯组 灰岩 1 125 -2.03 -7.41 39.62 0.27 275.42 0.29 424.28 0.65 xxg-2-21 玉尔吐斯组 灰岩 1 138 -2.91 -7.59 0.708 386 0.000 004 39.50 0.36 337.94 0.24 385.51 0.88 xxg-2-22 玉尔吐斯组 灰岩 1 163 -2.73 -7.84 39.43 0.41 470.72 0.16 361.23 1.30 xxg-2-23 玉尔吐斯组 灰岩 1 193 -3.32 -7.49 0.708 482 0.000 007 39.55 0.32 267.84 0.27 371.27 0.72 xxg-2-24 玉尔吐斯组 灰岩 1 233 -1.75 -7.50 0.708 320 0.000 006 39.45 0.39 291.85 0.32 470.90 0.62 xxg-2-25 玉尔吐斯组 灰岩 1 243 -1.14 -7.61 39.40 0.43 233.07 0.36 437.25 0.53 xxg-2-26 玉尔吐斯组 灰岩 1 250 -1.27 -8.08 39.51 0.35 239.77 0.27 426.05 0.56 xxg-2-28 玉尔吐斯组 灰岩 1 270 -1.49 -7.91 0.708 333 0.000 004 39.49 0.36 262.12 0.19 429.26 0.61 xxg-2-29 玉尔吐斯组 灰岩 1 275 -1.99 -7.65 39.34 0.47 269.61 0.25 446.59 0.60 xxg-2-30 玉尔吐斯组 灰岩 1 295 -1.83 -8.04 0.708 428 0.000 007 39.41 0.42 372.56 0.25 392.99 0.95 xxg-2-31 玉尔吐斯组 灰岩 1 310 -2.44 -8.18 39.42 0.41 672.58 0.17 352.81 1.91 xxg-2-32 玉尔吐斯组 灰岩 1 340 -0.17 -7.40 39.53 0.34 390.92 0.40 337.09 1.16 xxg-2-33 玉尔吐斯组 灰岩 1 360 -1.31 -7.72 0.708 364 0.000 006 39.46 0.39 950.54 0.28 354.90 2.68 xxg-2-34 玉尔吐斯组 灰岩 1 400 -1.56 -7.85 39.50 0.36 463.18 0.26 359.32 1.29 xxg-2-35 玉尔吐斯组 灰岩 1 430 0.71 -7.43 0.708 562 0.000 006 39.56 0.31 510.87 0.41 291.14 1.75 xxg-2-36 玉尔吐斯组 灰岩 1 445 -0.09 -7.87 39.51 0.35 1 066.16 0.22 331.78 3.21 xxg-2-37 玉尔吐斯组 灰岩 1 470 -0.90 -8.02 39.34 0.47 552.56 0.32 334.08 1.65 xxg-3-1 玉尔吐斯组 瘤状灰岩 1 510 -0.01 -7.85 0.708 518 0.000 008 39.46 0.38 2 228.02 0.29 392.53 5.68 xxg-3-2 玉尔吐斯组 瘤状灰岩 1 550 0.12 -8.13 0.708 556 0.000 005 39.51 0.35 540.57 0.26 343.17 1.58 xxg-3-3 玉尔吐斯组 瘤状灰岩 1 600 1.44 -7.55 39.41 0.42 351.21 0.34 474.54 0.74 xxg-3-4 玉尔吐斯组 瘤状灰岩 1 650 1.61 -7.70 0.708 444 0.000 005 39.41 0.42 523.38 0.30 339.35 1.54 xxg-3-5 玉尔吐斯组 瘤状灰岩 1 740 0.68 -7.89 0.708 660 0.000 005 38.46 1.10 793.91 0.25 337.39 2.35 xxg-3-6 玉尔吐斯组 瘤状灰岩 1 830 1.64 -7.97 0.708 703 0.000 005 39.46 0.38 448.01 0.28 377.56 1.19 xxg-3-7 玉尔吐斯组 泥质灰岩 1 875 1.18 -7.66 39.40 0.43 924.63 0.35 308.45 3.00 xxg-3-8 玉尔吐斯组 泥质灰岩 1 965 1.01 -5.47 0.708 739 0.000 004 38.05 1.39 579.23 0.39 285.85 2.03 xxg-3-9 玉尔吐斯组 泥质灰岩 2 015 0.76 -7.46 39.51 0.35 503.73 0.32 276.58 1.82 xxg-3-10 玉尔吐斯组 泥质灰岩 2 060 0.70 -5.87 0.708 801 0.000 006 38.62 0.99 635.00 0.43 284.02 2.24 xxg-3-11 玉尔吐斯组 泥质灰岩 2 105 -0.06 -8.99 37.77 1.59 675.56 0.61 261.56 2.58 xxg-3-12 玉尔吐斯组 泥质白云岩 2 150 -0.06 -9.10 23.18 12.02 1 469.33 0.52 101.80 14.43 xxg-3-13 玉尔吐斯组 泥质白云岩 2 210 -0.34 -8.44 0.709 751 0.000 007 22.80 12.28 1 559.40 0.37 66.09 23.59 xxg-3-14 玉尔吐斯组 泥质白云岩 2 330 -0.28 -8.07 22.07 12.80 1 212.41 0.35 58.97 20.56 xxg-3-15 玉尔吐斯组 泥质白云岩 2 370 -0.15 -8.11 0.709 432 0.000 004 22.01 12.85 763.29 0.19 67.15 11.37 xxg-3-16 肖尔布拉克组 白云岩 2 530 0.38 -8.12 21.79 13.01 382.18 0.08 51.13 7.48 xxg-3-17 肖尔布拉克组 白云岩 2 570 0.76 -7.37 22.43 12.55 249.11 0.07 53.33 4.67 xxg-3-18 肖尔布拉克组 白云岩 2 740 1.48 -7.58 23.23 11.98 255.49 0.11 77.21 3.31 表 2 塔里木盆地柯坪地区昆盖阔坦剖面玉尔吐斯组碳酸盐岩同位素和元素含量
Table 2. Isotope and element contents of carbonates from Yurtus Formation in Kungaikuotan section, Keping area, Tarim Basin
样品号 岩性 高度/cm δ13Ccarb/‰ δ18Ocarb/‰ 87Sr/86Sr ±σ Ca/% Mg/% Mn/(μg/g) Rb/(μg/g) Sr/(μg/g) Mn/Sr kgkt-3-1 白云岩 410 -3.88 -7.29 kgkt-4-2 灰岩 520 -3.48 -7.54 25.08 10.66 1 274.71 1.17 146.87 8.68 kgkt-4-4 灰岩 570 -3.70 -7.80 25.29 10.51 1 290.38 1.29 142.31 9.07 kgkt-4-6 灰岩 600 -4.03 -5.87 25.75 10.18 1 316.81 2.17 165.86 7.94 kgkt-4-8 灰岩 650 -2.28 -7.62 0.708 844 0.000 003 37.33 1.91 660.77 0.63 248.54 2.66 kgkt-4-9 灰岩 690 -2.32 -7.41 0.709 136 0.000 005 36.61 2.42 901.68 0.97 224.13 4.02 kgkt-4-11 灰岩 750 -2.09 -6.94 0.708 890 0.000 006 38.03 1.41 735.33 0.66 223.42 3.29 kgkt-4-12 灰岩 770 -1.82 -7.47 38.83 0.83 1 048.20 0.66 256.80 4.08 kgkt-4-13 灰岩 780 -3.39 -7.36 38.81 0.85 993.27 0.66 225.88 4.40 kgkt-4-14 灰岩 810 -0.77 -7.23 0.708 507 0.000 005 39.41 0.42 687.01 0.42 224.52 3.06 kgkt-4-15 灰岩 830 -2.68 -7.53 39.47 0.38 2 324.77 0.57 255.41 9.10 kgkt-4-16 灰岩 865 -0.57 -7.41 0.709 146 0.000 003 39.29 0.51 1 119.21 2.43 306.52 3.65 kgkt-4-17 灰岩 875 -0.91 -7.42 39.30 0.50 1 530.37 1.20 268.35 5.70 kgkt-4-18 灰岩 895 -0.15 -7.31 39.26 0.53 847.24 0.62 269.19 3.15 kgkt-4-19 灰岩 910 -0.46 -7.38 0.709 427 0.000 004 39.14 0.61 1 263.98 0.84 251.31 5.03 kgkt-5-1 瘤状白云岩 990 -2.52 -9.66 22.96 12.17 539.37 0.16 101.91 5.29 kgkt-5-2 瘤状灰岩 1 020 0.04 -7.52 0.708 860 0.000 006 39.04 0.68 592.52 0.68 243.51 2.43 kgkt-5-3 瘤状灰岩 1 144 -1.07 -7.22 0.708 670 0.000 004 39.25 0.54 593.73 0.59 266.18 2.23 kgkt-5-4 瘤状灰岩 1 242 -1.14 -7.75 0.708 581 0.000 006 39.45 0.39 694.86 0.35 263.84 2.63 kgkt-5-5 瘤状灰岩 1 359 -1.52 -6.97 0.708 783 0.000 004 39.47 0.38 1 805.01 0.19 294.81 6.12 kgkt-5-6 瘤状灰岩 1 411 -0.70 -7.42 39.54 0.33 706.53 0.24 321.60 2.20 kgkt-5-7 泥质灰岩 1 474 -0.31 -7.97 0.709 128 0.000 007 39.42 0.41 1 418.82 2.46 340.42 4.17 kgkt-5-8 泥质灰岩 1 494 -0.66 -7.70 39.51 0.35 1 225.09 0.61 242.22 5.06 kgkt-5-9 泥质灰岩 1 524 -0.85 -7.90 39.56 0.31 1 149.80 0.51 231.35 4.97 kgkt-5-9-1 泥质灰岩 1 544 -0.90 -6.77 0.708 840 0.000 006 39.41 0.42 532.71 0.42 259.58 2.05 kgkt-5-10 泥质灰岩 1 664 -4.29 -9.71 0.708 694 0.000 008 38.80 0.85 148.84 0.15 511.09 0.29 kgkt-5-11 泥质白云岩 1 744 -2.29 -9.05 0.709 078 0.000 005 24.42 11.13 236.47 0.36 160.69 1.47 kgkt-5-12 泥质白云岩 1 844 -1.99 -9.64 22.11 12.78 211.17 0.55 96.53 2.19 kgkt-5-13 泥质白云岩 1 964 -1.42 -8.32 0.709 465 0.000 007 21.83 12.98 175.81 0.51 80.69 2.18 kgkt-5-14 泥质白云岩 2 084 -1.36 -8.19 22.26 12.67 189.82 1.00 100.91 1.88 kgkt-5-15 泥质白云岩 2 184 -0.87 -8.41 0.709 434 0.000 006 22.09 12.80 168.20 0.45 81.93 2.05 kgkt-5-16 泥质白云岩 2 234 -0.75 -8.36 22.32 12.63 181.63 2.99 90.69 2.00 kgkt-5-17 泥质白云岩 2 264 -0.61 -8.70 0.709 280 0.000 006 22.18 12.73 169.80 1.13 76.33 2.22 -
[1] LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210. [2] CAÑADAS F, PAPINEAU D, LENG M J, et al. Extensive primary production promoted the recovery of the Ediacaran Shuram excursion[J]. Nature Communications, 2022, 13(1): 148. doi: 10.1038/s41467-021-27812-5 [3] 杨宗玉, 罗平, 刘波, 等. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组两套黑色岩系的差异及成因[J]. 岩石学报, 2017, 33(6): 1893-1918.YANG Zongyu, LUO Ping, LIU Bo, et al. The difference and sedimentation of two black rock series from Yurtus Formation during the earliest Cambrian in the Aksu area of Tarim Basin, Northwest China[J]. Acta Petrologica Sinica, 2017, 33(6): 1893-1918. [4] HU Yao, JIA Chengzao, CHEN Junqing, et al. Restoration of hydrocarbon generation potential of the highly mature Lower Cambrian Yuertusi Formation source rocks in the Tarim Basin[J]. Petroleum Science, 2025, 22(2): 588-606. doi: 10.1016/j.petsci.2024.12.001 [5] LAN Zhongwu, LI Xianhua, CHU Xuelei, et al. SIMS U-Pb zircon ages and Ni-Mo-PGE geochemistry of the Lower Cambrian Niutitang Formation in South China: constraints on Ni-Mo-PGE mineralization and stratigraphic correlations[J]. Journal of Asian Earth Sciences, 2017, 137: 141-162. doi: 10.1016/j.jseaes.2016.12.046 [6] 曹熔, 张姝婧, 兰中伍. 火山灰锆石U-Pb定年在沉积岩定年上的应用[J]. 沉积与特提斯地质, 2023, 43(2): 464-474.CAO Rong, ZHANG Shujing, LAN Zhongwu. Application of zircon U-Pb dating of volcanic ash to dating of sedimentary rock[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(2): 464-474. [7] 陈永权, 潘兵, 杨果, 等. 塔里木克拉通寒武系年代框架、层序地层与沉积演化[J]. 地层学杂志, 2024, 48(3): 219-236.CHEN Yongquan, PAN Bing, YANG Guo, et al. Cambrian chronostratigraphy, sequence stratigraphy, and sedimentary evolution of the Tarim Craton[J]. Journal of Stratigraphy, 2024, 48(3): 219-236. [8] 朱茂炎, 杨爱华, 袁金良, 等. 中国寒武纪综合地层和时间框架[J]. 中国科学: 地球科学, 2019, 49(1): 26-65.ZHU Maoyan, YANG Aihua, YUAN Jinliang, et al. Cambrian integrative stratigraphy and timescale of China[J]. Scientia Sinica (Terrae), 2019, 49(1): 26-65. [9] 汪瑾, 吝祎勃, 杨涛. 三峡地区早寒武世海水氧化还原环境的变化: 来自罗家村剖面碳同位素解耦的证据[J]. 石油实验地质, 2023, 45(1): 157-167. doi: 10.11781/sysydz202301157WANG Jin, LIN Yibo, YANG Tao. Evolution of environmental oxidation and reduction of sea water in Three Gorges area in Early Cambrian: evidence from decoupled carbon isotopes in Luojiacun section[J]. Petroleum Geology & Experiment, 2023, 45(1): 157-167. doi: 10.11781/sysydz202301157 [10] BRASIER M D, CORFIELD R M, DERRY L A, et al. Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia[J]. Geology, 1994, 22(5): 455-458. doi: 10.1130/0091-7613(1994)022<0455:MCESTC>2.3.CO;2 [11] ZHU Maoyan, BABCOCK L E, PENG S C. Advances in Cambrian stratigraphy and paleontology: integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction[J]. Palaeoworld, 2006, 15(3/4): 217-222. [12] LI Da, LING Hongfei, SHIELDS-ZHOU G A, et al. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: evidence from the Xiaotan section, NE Yunnan, South China[J]. Precambrian Research, 2013, 225: 128-147. doi: 10.1016/j.precamres.2012.01.002 [13] BRASIER M D, SHIELDS G, KULESHOV V N, et al. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-Early Cambrian of southwest Mongolia[J]. Geological Magazine, 1996, 133(4): 445-485. doi: 10.1017/S0016756800007603 [14] 张莹刚. 塔里木盆地北缘埃迪卡拉—寒武系碳酸盐岩地球化学研究[D]. 南京: 南京大学, 2022.ZHANG Yinggang. Geochemical study on the Ediacaran-Cambrian carbonates in the northern Tarim Basin[D]. Nanjing: Nanjing University, 2022. [15] 胡作维, 李云, 李北康, 等. 显生宙以来海水锶同位素组成研究的回顾与进展[J]. 地球科学进展, 2015, 30(1): 37-49.HU Zuowei, LI Yun, LI Beikang, et al. An overview of the Strontium isotopic composition of Phanerozoic seawater[J]. Advances in Earth Science, 2015, 30(1): 37-49. [16] MCARTHUR J M, HOWARTH R J, SHIELDS G A, et al. Strontium isotope stratigraphy[M]//GRADSTEIN F M, OGG J G, SCHMITZ M D, et al. Geologic time scale 2020. Amsterdam: Elsevier, 2020: 211-238. [17] PENG S C, BABCOCK L E, AHLBERG P. The Cambrian period[M]//GRADSTEIN F M, OGG J G, SCHMITZ M D, et al. Geologic time scale 2020. Amsterdam: Elsevier, 2020: 565-629. [18] 林焕令, 陈挺恩, 袁金良, 等. 寒武系[M]//周志毅. 塔里木盆地各纪地层. 北京: 科学出版社, 2001: 12-38.LIN Huanling, CHEN Tingen, YUAN Jinliang, et al. Cambarin[M]//ZHOU Zhiyi. Stratigraphy of the Tarim Basin. Beijing: Science Press, 2001: 12-38. [19] 钱逸, 冯伟民, 李国祥, 等. 新疆寒武纪早期单壳类软体动物化石分类学与生物地层学[J]. 微体古生物学报, 2009, 26(3): 193-210.QIAN Yi, FENG Yimin, LI Guoxiang, et al. Taxonomy and bio-stratigraphy of the Early Cambrian univalved mollusc fossils from Xinjiang[J]. Acta Micropalaeontologica Sinica, 2009, 26(3): 193-210. [20] GUO Qingjun, DENG Yinan, HU Jian, et al. Carbonate carbon isotope evolution of seawater across the Ediacaran-Cambrian transition: evidence from the Keping area, Tarim Basin, NW China[J]. Geological Magazine, 2017, 154(6): 1244-1256. doi: 10.1017/S0016756817000206 [21] 朱茂炎, 孙智新, 杨爱华, 等. 中国寒武纪岩石地层划分和对比[J]. 地层学杂志, 2021, 45(3): 223-249.ZHU Maoyan, SUN Zhixin, YANG Aihua, et al. Lithostratigraphic subdivision and correlation of the Cambrian in China[J]. Journal of Stratigraphy, 2021, 45(3): 223-249. [22] 蔡振忠, 徐帆, 杨果, 等. 塔里木盆地下寒武统玉尔吐斯组沉积特征及有机质富集模式[J]. 现代地质, 2024, 38(5): 1258-1269.CAI Zhenzhong, XU Fan, YANG Guo, et al. Sedimentary characteristics of the Lower Cambrian Yuertusi Formation and the organic matter enrichment model in the Tarim Basin[J]. Geoscience, 2024, 38(5): 1258-1269. [23] ZHU Guangyou, CHEN Feiran, CHEN Zhiyong, et al. Discovery and basic characteristics of high-quality source rocks found in the Yuertusi Formation of the Cambrian in Tarim Basin, China[J]. Journal of Natural Gas Geoscience, 2016, 1(1): 21-33. doi: 10.1016/j.jnggs.2016.05.002 [24] 郭婷婷, 朱碧, 杨涛, 等. 塔里木盆地下寒武统西山布拉克组—西大山组沉积环境演化[J]. 石油实验地质, 2023, 45(2): 252-265. doi: 10.11781/sysydz202302252GUO Tingting, ZHU Bi, YANG Tao, et al. Evolution of sedimentary environment of the Lower Cambrian Xishanbulake-Xidashan formations in the Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(2): 252-265. doi: 10.11781/sysydz202302252 [25] 顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001GU Yi, HUANG Jiwen, JIA Cunshan, et al. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001 [26] 杨犇, 刘鹏举, 尚晓冬, 等. 新疆阿克苏地区寒武纪幸运期早期小壳化石[J]. 地质学报, 2023, 97(12): 4044-4051.YANG Ben, LIU Pengju, SHANG Xiaodong, et al. Early Fortunian small shelly fossils from the Aksu area of Xinjiang, China[J]. Acta Geologica Sinica, 2023, 97(12): 4044-4051. [27] YAO Jinxian, XIAO Shuhai, YIN Leiming, et al. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, north-west China): systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs[J]. Palaeontology, 2005, 48(4): 687-708. doi: 10.1111/j.1475-4983.2005.00484.x [28] DONG Lin, XIAO Shuhai, SHEN Bing, et al. Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu area (Tarim block, northwestern China)[J]. Journal of Paleontology, 2009, 83(1): 30-44. doi: 10.1666/07-147R.1 [29] ZHANG Chuanlin, ZOU Haibo, LI Huaikun, et al. Tectonic framework and evolution of the Tarim Block in NW China[J]. Gondwana Research, 2013, 23(4): 1306-1315. doi: 10.1016/j.gr.2012.05.009 [30] MERDITH A S, COLLINS A S, WILLIAMS S E, et al. A full-plate global reconstruction of the Neoproterozoic[J]. Gondwana Research, 2017, 50: 84-134. doi: 10.1016/j.gr.2017.04.001 [31] HUANG Baochun, ZHU Rixiang, OTOFUJI Y, et al. The Early Paleozoic paleogeography of the North China block and the other major blocks of China[J]. Chinese Science Bulletin, 2000, 45(12): 1057-1065. doi: 10.1007/BF02887174 [32] 陈强路, 储呈林, 杨鑫, 等. 塔里木盆地寒武系沉积模式与烃源岩发育[J]. 石油实验地质, 2015, 37(6): 689-695. doi: 10.11781/sysydz201506689CHEN Qianglu, CHU Chenglin, YANG Xin, et al. Sedimentary model and development of the Cambrian source rocks in the Tarim Basin, NW China[J]. Petroleum Geology & Experiment, 2015, 37(6): 689-695. doi: 10.11781/sysydz201506689 [33] 肖兵, 段承华. 新疆早寒武世玉尔吐斯小壳动物群再研究[J]. 新疆地质, 1992, 10(3): 212-232.XIAO Bing, DUAN Chenghua. Review of small shelly fauna of Yultus, Early Cambrian of Xinjiang[J]. Xinjiang Geology, 1992, 10(3): 212-232. [34] 王务严, 肖兵, 章森桂, 等. 新疆阿克苏—乌什地区寒武系划分与对比[J]. 新疆地质, 1985, 3(4): 59-74.WANG Wuyan, XIAO Bing, ZHANG Sengui, et al. Division and correlation of Cambrian system in Aksu-Wushi district of Xinjiang[J]. Xinjiang Geology, 1985, 3(4): 59-74. [35] 肖兵, 钱建新. 早寒武世早期小壳动物群特征及震旦系—寒武系界线讨论[M]//高振家, 王务严, 彭昌文, 等. 新疆阿克苏—乌什地区震旦系. 乌鲁木齐: 新疆人民出版社, 1986: 21-47.XIAO Bing, QIAN Jianxin. The features of small shelly fauna of early stage of Early Cambrian and discussion of the Sinan-Cambrian boundary[M]//GAO Zhenjia, WANG Wuyan, PENG Changwen, et al. The Sinian system on Aksu-Wushi region, Xinjiang, China. Urumuqi: Xinjiang People ' s Publishing House, 1986: 21-47. [36] 岳昭, 高林志. 新疆阿克苏—乌什地区下寒武统原牙形类等化石及其地质意义[C]//中国地质科学院地质研究所文集(23). 北京: 地质出版社, 1992: 137-164.YUE Zhao, GAO Linzhi. Paleontology, biostratigraphy and geological significance of the Early Cambrian protoconodonts and other skeletal microfossils from Aksu-Wushi region, Xinjiang, China[C]//Bulletin of the Institute of Geology Chinese Academy of Geological Scinece. 1992: 137-164. [37] ZHANG Yinggang, YANG Tao, HOHL S V, et al. Seawater carbon and strontium isotope variations through the Late Ediacaran to Late Cambrian in the Tarim Basin[J]. Precambrian Research, 2020, 345: 105769. doi: 10.1016/j.precamres.2020.105769 [38] LEI Huanling, YANG Tao, JIANG Shaoyong, et al. A simple two-stage column chromatographic separation scheme for strontium, lead, neodymium and hafnium isotope analyses in geological samples by thermal ionization mass spectrometry or multi-collector inductively coupled plasma mass spectrometry[J]. Journal of Separation Science, 2019, 42(20): 3261-3275. doi: 10.1002/jssc.201900579 [39] 黄思静, 石和, 毛晓冬, 等. 早古生代海相碳酸盐的成岩蚀变性及其对海水信息的保存性[J]. 成都理工大学学报(自然科学版), 2003, 30(1): 9-18.HUANG Sijing, SHI He, MAO Xiaodong, et al. Diagenetic alteration of Earlier Palaeozoic marine carbonate and preservation for the information of sea water[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2003, 30(1): 9-18. [40] DERRY L A, BRASIER M D, CORFIELD R M, et al. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: a paleoenvironmental record during the 'Cambrian explosion'[J]. Earth and Planetary Science Letters, 1994, 128(3/4): 671-681. [41] POKROVSKY B G, BUJAKAITE M I, PETROV O L, et al. The C, O, and Sr isotope chemostratigraphy of the Vendian (Ediacaran)-Cambrian transition, Olekma River, western slope of the Aldan Shield[J]. Stratigraphy and Geological Correlation, 2020, 28(5): 479-492. doi: 10.1134/S086959382005007X [42] 樊奇, 樊太亮, 李清平, 等. 塔里木北缘震旦纪—寒武纪转折期碳同位素漂移事件及成因机制[J]. 地学前缘, 2021, 28(5): 436-447.FAN Qi, FAN Tailiang, LI Qingping, et al. Carbon isotope excursion and its genetic mechanism during the Sinian to Cambrian transition in the northern Tarim Basin[J]. Earth Science Frontiers, 2021, 28(5): 436-447. [43] ZHANG Tan, LI Yifan, FAN Tailiang, et al. Marine carbon and sulfur cycling across the Ediacaran-Cambrian boundary in Tarim Block and its implications for paleoenvironmental changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110011. doi: 10.1016/j.palaeo.2020.110011 [44] 江维. 塔里木盆地玉尔吐斯组沉积体系及烃源岩分布[D]. 北京: 中国地质大学(北京), 2021.JIANG Wei. Sedimentary system and source rock distribution of Yuertus Formation in Tarim Basin[D]. Beijing: China University of Geosciences(Beijing), 2021. [45] 金值民, 谭秀成, 唐浩, 等. 浅水超覆沉积富有机质细粒沉积物沉积环境与岩石学特征: 以塔里木盆地西北部寒武系玉尔吐斯组为例[J]. 石油勘探与开发, 2020, 47(3): 476-489.JIN Zhimin, TAN Xiucheng, TANG Hao, et al. Sedimentary environment and petrological features of organic-rich fine sediments in shallow water overlapping deposits: a case study of Cambrian Yuertus Formation in northwestern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 476-489. [46] 李达. 扬子南缘新元古代晚期—寒武纪早期古环境重建: 多指标地球化学研究[D]. 南京: 南京大学, 2010.LI Da. Paleo-environment reconstruction from the south margin of Yangtze Platform in Late Neoproterozoic-Early Cambrian interval: multi-proxy geochemical studies[D]. Nanjing: Nanjing University, 2010. [47] JONES C E, JENKYNS H C, COE A L, et al. Strontium isotopic variations in Jurassic and Cretaceous seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(14): 3061-3074. doi: 10.1016/0016-7037(94)90179-1 [48] MALOOF A C, PORTER S M, MOORE J L, et al. The earliest Cambrian record of animals and ocean geochemical change[J]. Geological Society of America Bulletin, 2010, 122(11/12): 1731-1774. [49] NICHOLAS C J. The Sr isotopic evolution of the oceans during the 'Cambrian Explosion'[J]. Journal of the Geological Society, 1996, 153(2): 243-254. doi: 10.1144/gsjgs.153.2.0243 [50] KAUFMAN A J, KNOLL A H, SEMIKHATOV M A, et al. Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region, northern Siberia[J]. Geological Magazine, 1996, 133(5): 509-533. doi: 10.1017/S0016756800007810 [51] KNOLL A H, KAUFMAN A J, SEMIKHATOV M A, et al. Sizing up the sub-Tommotian unconformity in Siberia[J]. Geology, 1995, 23(12): 1139. doi: 10.1130/0091-7613(1995)023<1139:SUTSTU>2.3.CO;2 [52] YAO Chunyan, DING Haifeng, MA Dongsheng, et al. Carbon isotope features of the Sugetbrak Section in the Aksu-Wushi area, Northwest China: implications for the Precambrian/Cambrian stratigraphic correlations[J]. Acta Geologica Sinica-English Edition, 2014, 88(5): 1535-1546. doi: 10.1111/1755-6724.12316 [53] TOPPER T, BETTS M J, DORJNAMJAA D, et al. Locating the BACE of the Cambrian: Bayan Gol in southwestern Mongolia and global correlation of the Ediacaran-Cambrian boundary[J]. Earth-Science Reviews, 2022, 229: 104017. doi: 10.1016/j.earscirev.2022.104017 -