Diagenesis and pore evolution of tight reservoirs in glutenite section of Bachu Formation, Tahe Oilfield
-
摘要: 石炭系巴楚组砂砾岩段储层致密,是塔河油田未来重要的勘探目的层,但研究非常薄弱,特别是储层成岩作用和孔隙演化不清,严重影响了巴楚组砂砾岩段致密油气的勘探开发。基于巴楚组岩性和沉积相分析,利用岩心、X衍射、铸体薄片、扫描电镜和阴极发光等资料,对塔河油田西部和东部地区巴楚组砂砾岩和砂岩的成岩作用、孔隙演化及其差异进行了系统的研究对比。巴楚组砂砾岩段岩石类型多样,以砂岩和砂砾岩为主,西部地区储层的成分成熟度、结构成熟度、储层物性均高于东部地区。砂砾岩段储层成岩作用以压实作用、胶结作用和溶蚀作用为主,西部地区主要成岩作用为较强的压实作用,强烈的溶蚀作用,中等—较强的胶结作用;东部地区压实作用也较强,而胶结作用更强,溶蚀作用偏弱。结合镜质体反射率、伊蒙混层中蒙脱石的比例以及含铁方解石的出现,认为塔河油田西部和东部地区砂砾岩的成岩阶段均进入中成岩B期。孔隙演化与成岩作用密切相关,西部地区砂岩经过成岩作用,孔隙度由38.8%变为8.8%,砂砾岩孔隙度则由30.5%变为4.5%;东部地区砂砾岩段储层孔隙度经成岩演化由27.0%变为4.0%。该研究可为塔河油田巴楚组砂砾岩段致密油储层评价、勘探开发与甜点优选提供参考。Abstract: The tight reservoirs in the glutenite section of the Carboniferous Bachu Formation in the Tahe Oilfield represent an important future exploration target. However, research on these reservoirs remains quite limited, particularly regarding diagenesis and pore evolution, which severely restricts the exploration and development of tight oil and gas in the glutenite section of the Bachu Formation. Based on the analysis of lithology and sedimentary facies of the Bachu Formation, this study systematically compared diagenesis, pore evolution, and their differ-ences between glutenite and sandstone in the western and eastern areas of the Tahe Oilfield. The analysis integrated core observations, X-ray diffraction, cast thin sections, scanning electron microscopy, and cathodoluminescence data. The rock types in the glutenite section of the Bachu Formation in Tahe Oilfield were diverse, mainly composed of sandstone and glutenite. The compositional maturity, structural maturity, and physical properties of the reservoirs in the western area were higher than those in the eastern area. Reservoir diagenesis in the glutenite section was mainly characterized by compaction, cementation, and dissolution. In the western area, the main diagenetic processes were strong compaction, intense dissolution, and moderate to strong cementation. In the eastern area, compaction was also strong, cementation was even stronger, but dissolution was relatively weak. Based on vitrinite reflectance (Ro), the proportion of montmorillonite in the mixed layers of illite and montmorillonite, and the occurrence of iron-bearing calcite, it was concluded that the glutenite in both the western and eastern areas of the Tahe Oilfield entered the middle diagenesis stage B. Pore evolution was closely related to diagenesis. In the western area, the porosity of sandstone decreased from 38.8% to 8.8% after diagenesis, while the porosity of glutenite decreased from 30.5% to 4.5%. In the eastern area, the porosity of reservoirs in the glutenite section decreased from 27.0% to 4.0% through diagenetic evolution. This study provides a reference for the evaluation, exploration and development, and sweet spot selection of tight oil reservoirs in the glutenite section of the Bachu Formation in the Tahe Oilfield.
-
Key words:
- diagenesis /
- pore evolution /
- glutenite /
- tight reservoir /
- Bachu Formation /
- Carboniferous /
- Tahe Oilfield
-
图 3 塔河油田巴楚组砂砾岩段储集空间类型
a.西部W7井,5 449.47 m,粗砂岩,粒间溶孔与岩屑溶孔;b.西部W7井,5 449.47 m,粗砂岩,粒间溶孔;c.西部W10井,5 327.72 m,中砂岩,长石颗粒被溶蚀;d.西部W10井,5 329.45 m,中砂岩,岩屑溶蚀及微裂缝;e.西部W9井,5 394.31 m,灰质角砾岩,微裂缝;f.西部W4井,5 576.96 m,中砾岩,岩屑溶蚀孔;g.东部W19井,5 302.2 m,中砂岩,胶结致密,孔隙很少;h.东部W17井,5 452.89 m,细砂岩,少量石英溶蚀孔;i.东部W19井,5 300.25 m,含砾粉晶灰岩,微裂缝。
Figure 3. Types of storage space of glutenite section in Bachu Formation, Tahe Oilfield
图 4 塔河油田巴楚组砂砾岩段压实作用特征
a.西部W9井,5 394.31 m,不等粒岩屑长石砂岩,碎屑颗粒间主要为点接触—线接触,长石表面土化及绢云母化,绢云母发生塑性形变;b.东部W3井,5 626.56 m,不等粒岩屑砂岩,碎屑颗粒间主要为点接触,云母及泥质物质发生塑性形变;c.西部W10井,5 327.72 m,中砂岩,刚性颗粒之间呈现凹凸接触,石英颗粒间发生刚性破裂出现裂缝;d.东部W19井,5 300.25 m,含砾粉晶灰岩,刚性颗粒之间呈现凹凸接触,石英颗粒间发生刚性破裂出现裂缝。
Figure 4. Compaction characteristics of glutenite section in Bachu Formation, Tahe Oilfield
图 5 塔河油田巴楚组砂砾岩段胶结作用特征
a.西部W4井,5 576.96 m,中砾岩,方解石发橙红、橙黄色光,白云石发红色、玫红色光;b.西部W3井,5 619.51 m,砾岩,碎屑石英主要发黑褐色光,方解石发橙红、橙黄色光;c.西部W3井,5 619.51 m,砾岩,泥晶方解石胶结;d.东部W17井,5 452.89 m,细砂岩,细晶结构方解石晶体呈似斑晶状嵌于泥晶结构方解石晶体集合体中;e.东部W19井,5 301.84 m,含砾中砂岩,石英发黑褐色光,方解石分2期发深褐色、橙红橙黄色光;f.西部W10井,5 327.72 m,中砂岩,石英次生加大;g.西部W10井,5 329.45 m,中砂岩,次生石英晶体及片丝状伊利石集合体充填于粒间孔隙中;h.东部W13井,5 499.52 m,细粉砂岩,石英次生加大,次生石英晶体附着于碎屑颗粒表面、充填于粒间孔隙中;i.东部W13井,5 499.52 m,细粉砂岩,次生石英晶体及方解石晶体充填于粒间孔隙中;j.西部W10井,5 327.72 m,中砂岩,片状高岭石集合体充填于粒间孔隙中,其中夹杂片丝状伊利石;k.东部W19井,5 300.25 m,细砾岩,片丝状伊利石充填于方解石晶体之间;l.东部W19井,5 300.25 m,细砂岩,片丝状伊利石集合体充填于方解石晶体之间。
Figure 5. Cementation characteristics of glutenite section in Bachu Formation, Tahe Oilfield
图 7 塔河油田巴楚组砂砾岩段溶蚀作用特征
a.西部W11井,5 295.23 m,含砾泥晶灰岩,可见方解石溶蚀孔,直径约0.5 cm;b.西部W1井,5 850.62 m,杂色中砾岩,见溶蚀孔;c.东部W18井,5 336.20 m,泥质粉砂岩,溶蚀孔少见;d.西部W4井,5 329.45 m,长石颗粒沿解理被溶蚀,形成格架状粒内溶孔,次生石英晶体充填于颗间溶孔中;e.西部W4井,5 576.96 m,中砾岩,火成岩岩屑溶蚀;f.东部W13井,5 499.52 m,少量石英溶蚀孔。
Figure 7. Dissolution characteristics of glutenite section in Bachu Formation, Tahe Oilfield
表 1 塔河油田巴楚组砂砾岩段岩石学特征
Table 1. Petrological characteristics of glutenite section in Bachu Formation, Tahe Oilfield
岩性 西部砂岩 东部砂岩 西部砂砾岩 东部砂砾岩 岩石类型 石英、长石石英和岩屑石英砂岩 长石石英、岩屑石英和长石岩屑砂岩 石英、岩屑石英和岩屑砂砾岩 岩屑石英和岩屑砂砾岩 矿物含量/% 石英 15.0~99.0/78.2 15.0~95.0/74.0 15.0~98.0/68.2 10.0~82.0/57.1 长石 1.0~55.0/8.0 3.0~40.0/11.6 0~80.0/10.3 2.0~10.0/6.8 岩屑 1.0~80.0/13.8 2.0~65.0/14.4 1.0~84.0/21.5 8.0~85.0/36.1 最大粒径/mm 0.10~0.96/0.45 0.12~0.99/0.46 1.00~24.00/3.60 1.00~32.00/6.70 主要粒径/mm 0.06~0.25 0.08~0.36 0.20~2.00 0.20~2.50 分选 中等—好 中等—好 中等—差 中等—差 磨圆 次圆、次棱—次圆为主 次圆为主,其次为次棱—次圆及次圆—圆 次圆、次棱—次圆为主 次圆为主,其次为次棱—次圆 胶结物 以灰质胶结为主,含少量云质、硅质胶结 以灰质胶结为主,含少量云质、硅质胶结 以灰质胶结为主 灰质胶结为主,含少量云质胶结 胶结类型 孔隙式胶结为主,部分连晶式胶结和晶粒镶嵌 以孔隙式胶结为主,部分凝块—孔隙式胶结 孔隙式胶结为主,含部分连晶式镶嵌 以孔隙式和基底式胶结为主 颗粒支撑方式 颗粒支撑 颗粒支撑 颗粒支撑 颗粒及颗粒杂基支撑 成熟度 好————————————————————————————————→差 注:表中数值意义为最小值~最大值/平均值。 表 2 塔河油田巴楚组砂砾岩段物性特征
Table 2. Physical property characteristics of glutenite section in Bachu Formation, Tahe Oilfield
岩性 孔隙度/% 平均孔隙度/% 孔隙度主要分布区间/% 渗透率/(10-3 μm2) 平均渗透率/(10-3 μm2) 渗透率主要分布区间/(10-3 μm2) 储层分类 西部地区砂岩 0.4~25.5 8.8 2~12 0.007~419 15.64 0.01~10 特低孔特低渗 西部地区砂砾岩 1.8~9.8 4.0 1~5 0.03~9.39 1.07 0.01~1 超低孔超低渗(致密) 东部地区砂岩 0.9~26.6 4.1 1~5 0.002 6~2.67 0.27 0.01~1 超低孔超低渗(致密) 东部地区砂砾岩 3.6 0.04 超低孔超低渗(致密) 表 3 塔河油田巴楚组砂砾岩段储层主要成岩作用类型
Table 3. Main types of diagenesis of reservoirs in glutenite section of Bachu Formation, Tahe Oilfield
成岩作用类型 发生的主要成岩变化 对孔隙的影响 压实作用 云母、泥质岩岩屑等柔性的变形和石英、长石、岩屑等刚性颗粒的破裂;颗粒由游离状变为点线接触 破坏 胶结作用 碳酸盐胶结 泥晶、亮晶的无铁方解石,部分被交代为铁方解石 破坏大于建设 石英胶结 石英次生加大及自生微晶石英 黏土矿物胶结 充填在孔隙中的高岭石、伊利石、伊蒙混层 破坏 溶蚀作用 颗粒溶蚀、岩屑溶蚀,可见石英溶蚀孔 建设 -
[1] JIN Zhijun. Hydrocarbon accumulation and resources evaluation: recent advances and current challenges[J]. Advances in Geo-Energy Research, 2023, 8(1): 1-4. doi: 10.46690/ager.2023.04.01 [2] 郝杰, 周立发, 袁义东, 等. 断陷湖盆致密砂砾岩储层成岩作用及其对孔隙演化的影响[J]. 石油实验地质, 2018, 40(5): 632-638. doi: 10.11781/sysydz201805632HAO Jie, ZHOU Lifa, YUAN Yidong, et al. Diagenetic characteristics and their control on porosity of sandy conglomerate reservoirs in faulted basins[J]. Petroleum Geology & Experiment, 2018, 40(5): 632-638. doi: 10.11781/sysydz201805632 [3] LIU Jiantong, WANG Jianbo, GE Hongkui, et al. Effect of gravel on rock failure in glutenite reservoirs under different confining pressures[J]. Petroleum Science, 2023, 20(5): 3022-3036. doi: 10.1016/j.petsci.2023.04.006 [4] 李姝, 黄学斌, 肖玉茹, 等. 渤海湾盆地济阳坳陷中深层低渗砂砾岩油藏控制储量升级标准[J]. 石油实验地质, 2021, 43(1): 184-192. doi: 10.11781/sysydz202101184LI Shu, HUANG Xuebin, XIAO Yuru, et al. Controlled reserve upgrade standard for middle-deep low permeability glutenite reservoirs in Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 184-192. doi: 10.11781/sysydz202101184 [5] 罗群, 高阳, 张泽元, 等. 中国与美国致密油形成条件对比研究[J]. 石油实验地质, 2022, 44(2): 199-209. doi: 10.11781/sysydz202202199LUO Qun, GAO Yang, ZHANG Zeyuan, et al. A comparative study of geological conditions of tight oils in China and USA[J]. Petro-leum Geology & Experiment, 2022, 44(2): 199-209. doi: 10.11781/sysydz202202199 [6] 解习农, 叶茂松, 徐长贵, 等. 渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理[J]. 地球科学, 2018, 43(10): 3526-3539.XIE Xinong, YE Maosong, XU Changgui, et al. High quality reservoirs characteristics and forming mechanisms of mixed siliciclastic-carbonate sediments in the Bozhong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3526-3539. [7] 黄成, 朱筱敏, 金绪铃, 等. 准噶尔盆地永进地区齐古组深埋砂岩成岩作用对储集层质量影响的定量表征[J]. 古地理学报, 2024, 26(3): 683-699.HUANG Cheng, ZHU Xiaomin, JIN Xuling, et al. Quantitative characterization of influence of diagenesis on reservoir quality of deep-buried sandstone of the Qigu Formation in Yongjin area, Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition), 2024, 26(3): 683-699. [8] 邓继新, 柴康伟, 宋连腾, 等. 差异性成岩过程对百口泉组砂砾岩岩石物理特征的影响[J]. 地球物理学报, 2022, 65(11): 4448-4459.DENG Jixin, CHAI Kangwei, SONG Lianteng, et al. The influence of diagenetic evolution on rock physical properties of sandy conglomerate of Baikouquan Formation[J]. Chinese Journal of Geophysics, 2022, 65(11): 4448-4459. [9] 孙灵辉, 萧汉敏, 谭龙, 等. 致密砂砾岩储层孔隙结构对比及差异机制研究[J]. 地质学报, 2022, 96(6): 2155-2172.SUN Linghui, XIAO Hanmin, TAN Long, et al. Pore structure comparison and difference mechanism between tight sandstone and tight conglomerate reservoirs[J]. Acta Geologica Sinica, 2022, 96(6): 2155-2172. [10] 王然, 郑孟林, 杨森, 等. 玛南斜坡区上乌尔禾组弱胶结砂砾岩储层特征及控制因素[J]. 特种油气藏, 2022, 29(1): 23-30.WANG Ran, ZHENG Menglin, YANG Sen, et al. Characteristics and controlling factors of weakly cemented glutenite reservoir in Permian Upper Urho Formation, south slope of Mahu Sag[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 23-30. [11] 刘超, 陈海峰, 王洋, 等. 徐家围子断陷砂砾岩储层纳米—微米级孔隙的形成及其与天然气充注的关系[J]. 地球科学, 2018, 43(5): 1574-1586.LIU Chao, CHEN Haifeng, WANG Yang, et al. Formation of nano-micron pores in conglomerate reservoirs of Xujiaweizi Fault Depression and their relationship with natural gas filling[J]. Earth Science, 2018, 43(5): 1574-1586. [12] 王嘉楠, 赵卫卫, 刁新东, 等. 塔河油田石炭系巴楚组砂砾岩段沉积微相及沉积模式[J]. 特种油气藏, 2024, 31(5): 50-58.WANG Jia'nan, ZHAO Weiwei, DIAO Xindong, et al. Depositional microfacies and sedimentary patterns of sandy conglomerate in the carboniferous Bachu Formation of the Tahe Oilfield[J]. Special Oil & Gas Reservoirs, 2024, 31(5): 50-58. [13] 贺东旭, 陈志湘, 张城浩, 等. 东营凹陷利津北带砂砾岩体储层测井评价[J]. 油气地质与采收率, 2024, 31(2): 48-57.HE Dongxu, CHEN Zhixiang, ZHANG Chenghao, et al. Logging evaluation of glutenite reservoir in north region of Lijin, Dong-ying Sag[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(2): 48-57. [14] 于景强, 张云银, 孙志峰, 等. 东营凹陷盐家地区陡坡带砂砾岩特征及分布[J]. 断块油气田, 2023, 30(4): 632-638.YU Jingqiang, ZHANG Yunyin, SUN Zhifeng, et al. Study on characteristics and distribution of glutenite in steep slope zone of Yanjia area in Dongying Depression[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 632-638, 647. [15] 唐勇, 袁云峰, 李辉, 等. 准噶尔盆地阜康凹陷二叠系上乌尔禾组砂砾岩储层特征及发育模式[J]. 石油实验地质, 2024, 46(5): 965-978. doi: 10.11781/sysydz202405965TANG Yong, YUAN Yunfeng, LI Hui, et al. Glutenite reservoir characteristics and development model of Permian Upper Wuerhe Formation in Fukang Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2024, 46(5): 965-978. doi: 10.11781/sysydz202405965 [16] 冯明友, 张帆, 王兴志, 等. 塔河油田巴楚组底部砂泥岩段沉积特征[J]. 现代地质, 2010, 24(5): 919-924.FENG Mingyou, ZHANG Fan, WANG Xingzhi, et al. Depositional characters of the sand-mudstone in the bottom of Bachu Formation in Tahe Oilfield[J]. Geoscience, 2010, 24(5): 919-924. [17] 黄金叶, 王赐勋, 刘存革, 等. 塔里木盆地塔河油田4区石炭系巴楚组砂砾岩段混积环境分析[J]. 中国石油和化工标准与质量, 2022, 42(6): 131-134.HUANG Jinye, WANG Cixun, LIU Cunge, et al. Analysis of the mixing environment of the sand and gravel section of the Carboniferous Bachu Formation in area 4 of the Tarim Basin Tahe Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(6): 131-134. [18] 范春花, 蒲仁海, 俞仁连, 等. 塔河油田巴楚组底部砂泥岩段储层特征及控制因素[J]. 西安石油大学学报(自然科学版), 2007, 22(6): 5-10.FAN Chunhua, PU Renhai, YU Renlian, et al. Reservoir characteristics of the sand-mudstone in the bottom of Bachu Formation in Tahe Oilfield and their controlling factors[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2007, 22(6): 5-10. [19] 葛毓柱, 钟建华, 毛毳. 塔河六七区鹰山组—巴楚组混积特征研究[J]. 新疆地质, 2015, 33(1): 101-106.GE Yuzhu, ZHONG Jianhua, MAO Cui. Research about the Ying-shan-Bachu Formation characters of mixed deposition about debirs and carbonate in the six and seven area of Tahe Oilfield[J]. Xinjiang Geology, 2015, 33(1): 101-106. [20] 刁新东, 李映涛, 顾伟欣, 等. 三角洲水下分流河道砂体地震预测方法研究: 以塔河油田三叠系河道砂岩为例[J]. 物探与化探, 2018, 42(3): 569-575.DIAO Xindong, LI Yingtao, GU Weixin, et al. A study of seismic prediction method of underwater distributary channel sandbody in delta: a case study of the Tahe Oilfield[J]. Geophysical and Geochemical Exploration, 2018, 42(3): 569-575. [21] 徐勤琪, 储呈林, 郭小文, 等. 塔河油田盐下地区原油地球化学特征及不同期次油气成藏贡献[J]. 石油实验地质, 2024, 46(1): 111-123. doi: 10.11781/sysydz202401111XU Qinqi, CHU Chenglin, GUO Xiaowen, et al. Geochemical characteristics of crude oil and contributions to hydrocarbon accumulation in multiple stages in Tahe subsalt area[J]. Petroleum Geology & Experiment, 2024, 46(1): 111-123. doi: 10.11781/sysydz202401111 [22] 冯益潘. 塔里木盆地阿克库勒凸起构造特征演化对油气的控制作用[D]. 成都: 成都理工大学, 2012.FENG Yipan. The control action of tectonic evolution over oil and gas in Akekule lobe of Tarim Basin[D]. Chengdu: Chengdu University of Technology, 2012. [23] 李文平, 蒋玉梅, 梁宏刚. 塔河油田某区三叠系辫状河三角洲沉积砂体构型研究[J]. 中国石油和化工标准与质量, 2019, 39(12): 120-121.LI Wenping, JIANG Yumei, LIANG Honggang. A study on the configuration of sedimentary sands in the Triassic braided river delta in a district of the Tahe Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(12): 120-121. [24] 孙静. 阿克库勒凸起构造圈闭特征及其成因分析[D]. 成都: 成都理工大学, 2006.SUN Jing. Characterization of the tectonic enclosure of the Akkul Bulge and analysis of its genesis[D]. Chengdu: Chengdu University of Technology, 2006. [25] 杨永剑, 刘家铎, 田景春, 等. 塔里木盆地下石炭统巴楚组岩相古地理特征及演化[J]. 天然气地球科学, 2011, 22(1): 81-88.YANG Yongjian, LIU Jiaduo, TIAN Jingchun, et al. Lithofacies palaeogeography and evolution of Bachu Formation of Lower Carbonniferous in Tarim Basin[J]. Natural Gas Geoscience, 2011, 22(1): 81-88. [26] 孙宁亮, 钟建华, 刘绍光, 等. 鄂尔多斯盆地南部延长组重力流致密储层成岩作用及物性演化[J]. 地球科学, 2017, 42(10): 1802-1816.SUN Ningliang, ZHONG Jianhua, LIU Shaoguang, et al. Diagenesis and physical property evolution of gravity flow tight reservoir of Yanchang Formation in southern Ordos Basin[J]. Earth Science, 2017, 42(10): 1802-1816. [27] 卢炳雄, 张蕾, 宋欣原, 等. 砂砾岩储集层的成岩作用及孔隙演化: 以准噶尔盆地红车拐地区三叠系百口泉组为例[J]. 岩石矿物学杂志, 2023, 42(6): 838-851.LU Bingxiong, ZHANG Lei, SONG Xinyuan, et al. Diagenesis and pore evolution of sandy conglomerate reservoirs: a case study from Triassic Baikouquan Formation in Hongcheguai area of the Junggar Basin[J]. Acta Petrologica et Mineralogica, 2023, 42(6): 838-851. [28] 岳祯奇. 准噶尔盆地玛湖凹陷砂砾岩成岩作用特征及其对储层的影响[D]. 西安: 西北大学, 2019.YUE Zhenqi. Diagenetic features of glutenite and their implications for reservoir in Mahu Sag in Junggar Basin[D]. Xi'an: Northwest University, 2019. [29] 杨尚锋, 鲍志东, 沈延伟, 等. 鄂尔多斯盆地姬塬地区侏罗系延安组古河道砂岩储集层成岩演化及主要胶结物来源[J]. 古地理学报, 2023, 25(4): 906-919.YANG Shangfeng, BAO Zhidong, SHEN Yanwei, et al. Diagenetic evolution and sources of main cements within palaeochannel sandstone reservoirs of the Jurassic Yan'an Formation in Jiyuan area, Ordos Basin[J]. Journal of Palaeogeography (Chinese Edition), 2023, 25(4): 906-919. [30] 曹江骏, 罗静兰, 马迪娜·马吾提汗, 等. 差异性沉积—成岩演化过程对砂砾岩储层致密化的影响: 以准噶尔盆地东部二叠系上乌尔禾组为例[J]. 中国矿业大学学报, 2022, 51(5): 923-940.CAO Jiangjun, LUO Jinglan, MADINA·Mawutihan, et al. Influence of differential sedimentary-diagenetic evolution on the densification of the sandy conglomerate reservoir: a case study of the Permian Upper Wuerhe Formation in eastern Junggar Basin[J]. Journal of China University of Mining & Technology, 2022, 51(5): 923-940. [31] 李中超, 周勇水, 刘平, 等. 普光地区须家河组致密砂岩储层成岩作用及孔隙演化[J]. 断块油气田, 2023, 30(3): 353-362.LI Zhongchao, ZHOU Yongshui, LIU Ping, et al. Diagenesis and pore evolution of tight sandstone reservoirs of Xujiahe Formation in Puguang area[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 353-362. [32] 王艳忠, 操应长, 葸克来, 等. 地质历史时期砂岩储层渗透率演化恢复方法: 中国, 102778421B[P]. 2014-11-12.WANG Yanzhong, CAO Yingchang, XI Kelai, et al. Permeability evolution recovery method for sandstone reservoir in geological history period: CN, 102778421B[P]. 2014-11-12. -