留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔里木盆地顺北地区奥陶系凝析气地球化学特征及成因

崔福田 马安来 云露 曹自成 李贤庆 黄诚 何帅 郭楚媛

崔福田, 马安来, 云露, 曹自成, 李贤庆, 黄诚, 何帅, 郭楚媛. 塔里木盆地顺北地区奥陶系凝析气地球化学特征及成因[J]. 石油实验地质, 2025, 47(5): 1118-1133. doi: 10.11781/sysydz2025051118
引用本文: 崔福田, 马安来, 云露, 曹自成, 李贤庆, 黄诚, 何帅, 郭楚媛. 塔里木盆地顺北地区奥陶系凝析气地球化学特征及成因[J]. 石油实验地质, 2025, 47(5): 1118-1133. doi: 10.11781/sysydz2025051118
CUI Futian, MA Anlai, YUN Lu, CAO Zicheng, LI Xianqing, HUANG Cheng, HE Shuai, GUO Chuyuan. Geochemical characteristics and genesis of Ordovician condensate gas in Shunbei area, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(5): 1118-1133. doi: 10.11781/sysydz2025051118
Citation: CUI Futian, MA Anlai, YUN Lu, CAO Zicheng, LI Xianqing, HUANG Cheng, HE Shuai, GUO Chuyuan. Geochemical characteristics and genesis of Ordovician condensate gas in Shunbei area, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(5): 1118-1133. doi: 10.11781/sysydz2025051118

塔里木盆地顺北地区奥陶系凝析气地球化学特征及成因

doi: 10.11781/sysydz2025051118
基金项目: 

国家自然科学基金项目 42272167

国家自然科学基金企业联合基金项目 U24B6001

中国石化科技部项目 P23167

中国石化科技部项目 P24173

中央高校基本科研业务费中国矿业大学(北京)博士研究生拔尖创新人才培育基金 BBJ2024044

详细信息
    作者简介:

    崔福田(2000—),女,硕士生,从事油气地质和地球化学研究。E-mail: 369556462@qq.com

    通讯作者:

    马安来(1969—),男,博士,研究员,从事油气地球化学与成藏机理研究。E-mail: maal.syky@sinopec.com

  • 中图分类号: TE122.112

Geochemical characteristics and genesis of Ordovician condensate gas in Shunbei area, Tarim Basin

  • 摘要: 为了给塔里木盆地顺北地区深层油气勘探提供理论依据,采用气体组分和组分碳、氢同位素分析方法,系统分析了顺北地区奥陶系凝析气化学组成与同位素特征,并与轮古东、玉科及塔中东西部奥陶系凝析气对比,探讨顺北地区凝析气成因及形成过程。顺北地区奥陶系凝析气以烃类气体为主,其中5号断裂带南段、4号断裂带及8号断裂带凝析气干燥系数多低于0.95,呈现湿气特征;而12号断裂带、14号断裂带及顺南地区天然气以干气为主。顺北地区凝析气非烃类气体主要包括少量二氧化碳、氮气及微量硫化氢;烷烃气组分碳、氢同位素序列总体呈正序分布,部分样品出现同位素倒转现象;从5号断裂带南段至顺南地区,天然气成熟度逐渐增加。顺北地区奥陶系凝析气主要为热成因油型气,5号断裂带南段、4号断裂带及8号断裂带天然气为干酪根裂解气与原油裂解气的混合气源,其中原油裂解气以裂解初期形成的湿气为主;12号断裂带、14号断裂带及顺南地区天然气则以高成熟度原油裂解气为主,表现为干气特征。通过天然气地球化学分析,揭示了顺北地区凝析气成因的区域差异性,为塔里木盆地深层油气资源评价和勘探部署提供了依据。

     

  • 图  1  塔里木盆地顺北地区构造位置

    Figure  1.  Tectonic location of Shunbei area, Tarim Basin

    图  2  塔里木盆地顺北、塔中东西部、轮古东、玉科地区奥陶系凝析气甲烷含量分别与天然气干燥系数(a)、天然气重烃C2+(b)的关系

    Figure  2.  Relationship of methane content with natural gas dryness coefficient (a) and heavy hydrocarbon content C2+ (b) of Ordovician condensate gas in Shunbei, eastern and western Tazhong, eastern Lungu, and Yuke areas, Tarim Basin

    图  3  塔里木盆地顺北、塔中东西部、轮古东、玉科地区奥陶系凝析气中的CO2和N2含量关系

    Figure  3.  Relationship between CO2 and N2 content in Ordovician condensate gas in Shunbei, eastern and western Tazhong, eastern Lungu, and Yuke areas, Tarim Basin

    图  4  塔里木盆地顺北地区奥陶系不同断裂带凝析气组分碳同位素分布曲线

    Figure  4.  Carbon isotope distribution curves of Ordovician condensate gas from different faults in Shunbei area, Tarim Basin

    图  5  塔里木盆地顺北地区奥陶系凝析气氢同位素分布

    Figure  5.  Hydrogen isotope distribution of Ordovician condensate gas in Shunbei area, Tarim Basin

    图  6  塔里木盆地顺北、塔中东西部、轮古东、玉科地区凝析气成因类型划分

    图a底图据参考文献[34];图b底图据参考文献[35]。

    Figure  6.  Genesis type classification of condensate gas in Shunbei, eastern and western Tazhong, eastern Lungu, and Yuke areas, Tarim Basin

    图  7  塔里木盆地顺北地区奥陶系凝析气甲烷碳、氢同位素之间的关系

    底图据参考文献[36]。

    Figure  7.  Relationship between carbon and hydrogen isotopes in methane of Ordovician condensate gas in Shunbei area, Tarim Basin

    图  8  塔里木盆地顺北地区干酪根同位素和成熟度的关系

    图版据参考文献[39]。

    Figure  8.  Relationship between isotopes and maturity of kerogen in Shunbei area, Tarim Basin

    图  9  塔里木盆地顺北地区凝析气成熟度气油比判识图

    底图据参考文献[40]。

    Figure  9.  Identification diagram of maturity and gas-oil ratio of condensate gas in Shunbei area, Tarim

    图  10  塔里木盆地顺北地区、塔中东西部、轮古东、玉科地区奥陶系凝析气ln(C1/C2)和ln(C2/C3)的关系

    底图据参考文献[41]。

    Figure  10.  Relationship between ln (C1/C2) and ln (C2/C3) of Ordovician condensate gas in Shunbei, eastern and western Tazhong, eastern Lungu, and Yuke areas, Tarim Basin

    图  11  塔里木盆地顺北地区、塔中东西部、轮古东、玉科地区奥陶系凝析气(δ13C2-δ13C3)和(C2/C3)之间的关系

    底图据参考文献[42]。

    Figure  11.  Relationship between (δ13C2-δ13C3) and (C2/C3) of Ordovician condensate gas in Shunbei, eastern and western Tazhong, eastern Lungu, and Yuke areas, Tarim Basin

    图  12  塔里木盆地顺北地区H2S成因判识

    底图据参考文献[16]。

    Figure  12.  Identification of H2S genesis in Shunbei area, Tarim Basin

    图  13  塔里木盆地顺北地区奥陶系凝析气δ13C1δ13CCO2之间的关系

    底图据文献[35]。

    Figure  13.  δ13C1-δ13CCO2 relationship of Ordovician condensate gas in Shunbei area, Tarim Basin

    图  14  塔里木盆地顺北地区油气成藏过程

    据参考文献[56]修改。

    Figure  14.  Oil and gas accumulation process in Shunbei area, Tarim Basin

    表  1  塔里木盆地顺北地区奥陶系凝析气组分数据

    Table  1.   Data of Ordovician condensate gas components in Shunbei area, Tarim Basin

    断裂带或地区 井号 深度/m 层位 组分含量/% H2S/ (mg/m3) C1/ C1-5
    CH4 C2H6 C3H8 iC4 nC4 iC5 nC5 H2 N2 CO2
    5号带南段 SB53X 7 740.00~8 342.00 O2yj 74.51 7.90 3.08 0.68 1.44 0.38 0.50 0.06 4.96 6.49 1 850a 0.84
    SB53X 7 738.28~8 362.00 O2yj+O1-2y 80.15 7.06 2.68 0.57 1.16 0.23 0.32 0.15 0.82 6.86 0.87
    SB53-1H O2yj 86.78 5.44 1.88 0.37 0.73 0.15 0.19 0.04 0.62 3.81 5 129 0.91
    SB53-2H O2yj 87.90 3.21 0.66 0.17 0.30 0.00 0.13 0.14 1.71 5.79 64 429c 0.95
    SB55X-CZ O2yj 74.43 3.57 1.03 0.24 0.48 0.13 0.17 0.04 0.87 19.05 26 145 0.93
    SB56X O2yj 77.97 0.23 0 0 0 0 0 0.64 1.57 19.59 151 448a 1.00
    4号带 SB44X 7 493.49~8 261.69 O2yj 80.65 7.30 2.71 0.54 1.11 0.22 0.33 0.04 0.51 6.60 19 526c 0.87
    SB43X 7 558.00~7 995.00 O2yj+O1-2y 83.30 5.67 1.96 0.36 0.60 0 0 0.01 0.20 7.90 6 262c 0.91
    SB4-9H 7 600.00~8 110.17 O2yj+O1-2y 89.68 4.16 1.51 0.42 1.04 0.38 0.59 0.03 0.64 1.55 28 089a 0.92
    SB45X 7 664.00~8 845.00 O2yj+O1-2y 82.59 5.02 2.01 0.51 1.13 0.36 0.63 0.02 0.18 7.45 3 967a 0.90
    SB4-4H 7 551.02~8 587.04 O2yj+O1-2y 80.86 4.40 1.43 0.39 0.76 0.25 0.39 0.04 0.20 11.27 2 388c 0.91
    SB4-2H 7 551.02~8 587.04 O2yj+O1-2y 82.88 3.33 1.00 0.30 0.57 0.23 0.36 0.01 0.14 11.18 19 272c 0.93
    SB4 7 777.00 O2yj 86.15 1.91 0.50 0.10 0.20 0 0 0.26 1.93 8.96 69 853c 0.97
    SB4-3H 7 386.00~8 179.64 O2yj+O1-2y 84.77 2.52 0.60 0.10 0.19 0 0 0.01 0.17 11.64 18 967a 0.96
    SB4-1H 7 397.00~8 036.61 O2yj 77.70 3.49 1.10 0.23 0.48 0.12 0.17 0.17 0.37 16.16 22 506c 0.93
    8号带 ST1 7 874.00 O2yj+O1-2y 93.45 0.71 0.41 0.07 0.12 0.05 0.07 0.91 4.11 0.98
    SB84Xa 8 400.00~9 195.00 O2yj+O1-2y 86.60 5.80 2.10 0.50 0.60 0.20 0.10 1.70 2.10 7 562c 0.90
    SB83Xa 7 726.77~8 543.51 O2yj+O1-2y 87.60 5.20 2.30 0.60 0.80 0.20 0.20 1.20 1.90 8 332c 0.90
    SB802Xa 7 827.40~8 396.55 O2yj+O1-2y 87.60 3.20 1.10 0.30 0.30 0.10 0.10 5.30 2.00 6 647c 0.95
    SB8Xa 7 737.50~8 396.00 O2yj+O1-2y 88.50 3.70 1.10 0.30 0.20 0.10 0 3.80 2.20 335c 0.94
    SB801Xa 7 691.00~9 145.00 O2yj+O1-2y 84.80 5.10 1.40 0.50 0.50 0.20 0.20 1.70 5.60 1 465c 0.92
    SB803Xa 7 659.00~8 110.00 O2yj+O1-2y 88.20 3.90 1.10 0.40 0.50 0.20 0.20 2.10 3.10 3 303c 0.93
    SB82Xa 7 617.00~8 262.00 O2yj+O1-2y 88.60 4.60 1.30 0.40 0.50 0.20 0.20 1.30 2.50 3 900c 0.92
    SB81Xa 7 466.00~8 308.00 O2yj+O1-2y 93.00 1.50 0.40 0.20 0.20 0.10 0.10 0.40 4.20 16 350c 0.98
    12号带 SB122Xa 7 527.76~8 287.00 O2yj+O1-2y 85.30 0.60 0 0 0 0 0 4.50 9.50 127c 0.99
    SB12Xa 7 289.68~8 520.00 O2yj+O1-2y 87.10 0.20 0 0 0 0 0 3.50 9.10 227c 1.00
    14号带 SN1 6 528.40~6 690.00 O2yj+O1-2y 89.76 0.84 0.16 0.09 0.06 0.07 0 0.12 0 8.91 0.99
    SN1b 6 528.40~6 690.00 O2yj+O1-2y 80.80 2.06 1.18 0.42 0.49 1.68 12.00 0.95
    顺南地区 SN4 6 299.88~6 681.00 O2yj+O1-2y 90.42 0.47 0 0.96 8.15 0.99
    SN4b 6 299.90~6 681.00 O2yj+O1-2y 82.90 0.64 0.01 5.08 10.90 0.99
    SN4b 6 299.90~6 681.00 O2yj+O1-2y 83.30 0.65 0.99
    SN4b 6 299.90~6 681.00 O2yj+O1-2y 83.20 0.64 0.01 0.99
    SN401 6 457.07 O1-2y 80.91 1.46 0.88 0.16 0.13 0.09 0.05 2.81 13.51 0.97
    SN5b 7 176.50~7 209.90 O1-2y 93.50 0.11 1.95 3.37 0.99
    SN5b 7 176.50~7 209.90 O1-2y 94.40 0.12 1.32 3.36 0.99
    SN5b 7 176.50~7 209.90 O1-2y 93.50 0.11 2.07 3.34 0.99
    SN501 6 889.00~7 168.00 O1-2y 92.66 0.14 1.75 5.19 0.99
    SN5-1 6 939.80~7 218.29 O1-2y 91.33 0.14 3.88 3.78 0.99
    SN5-2 6 918.43~7 141.43 O1-2y 94.03 0.12 0.25 5.61 0.99
    SN7b 6 367.64~6 561.60 O2yj+O1-2y 93.40 0.22 0.28 5.98 0.99
    SN7 6 367.64~7 276.00 O2yj+O1-2y 93.42 0.10 0.28 6.19 0.99
    注:a数据来自参考文献[16];b数据来自参考文献[29];c数据来自参考文献[8]。
    下载: 导出CSV

    表  2  塔里木盆地顺北地区奥陶系凝析气碳、氢同位素数据

    Table  2.   Carbon and hydrogen isotope data of Ordovician condensate gas in Shunbei area, Tarim Basin

    断裂带 井号 深度/m 层位 δ13CVPDB/‰ δDSMOW/‰ Ro1/% Ro2/%
    C1 C2 C3 iC4 nC4 CO2 δD1 δD2 δD3 δD4
    5号带南段 SB53X 7 740.00~8 342.00 O2yj -47.7 -33.4 -31.7 -31.4 -30.4 -13.8 -159 0.45 0.63
    SB53X 7 738.28~8 362.00 O2yj+O1-2y -47.2 -32.5 -30.6 -31.2 -29.6 -3.3 -163 0.48 0.66
    SB53-1H O2yj -48.4 -32.8 -30.4 -31.0 -29.9 -9.6 0.41 0.58
    SB53-2H O2yj -47.5 -28.6 -25.4 -27.8 -26.3 -9.0 0.46 0.64
    SB55X-CZ O2yj -47.3 -32.1 -29.3 -31.2 -29.2 -4.1 0.48 0.65
    SB56X O2yj -45.6 -26.3 -4.7 0.61 0.78
    4号带 SB44X 7 493.49~8 261.69 O2yj -45.7 -33.7 -30.9 -32.0 -30.7 -7.0 0.60 0.78
    SB43X 7 558.00~7 995.00 O2yj+O1-2y -47.0 -33.4 -29.6 -30.4 -28.7 -2.5 -159 -114 0.50 0.68
    SB4-9H 7 600.00~8 110.17 O2yj+O1-2y -47.1 -33.2 -30.3 -31.5 -30.6 -2.3 -163 -110 0.49 0.67
    SB45X 7 664.00~8 845.00 O2yj+O1-2y -47.0 -33.0 -29.4 -30.8 -29.1 -2.6 -159 -109 0.50 0.68
    SB4-4H 7 551.02~8 587.04 O2yj+O1-2y -47.5 -32.6 -28.4 -29.9 -27.9 -2.2 -148 -109 0.46 0.64
    SB4-2H 7 551.02~8 587.04 O2yj+O1-2y -47.6 -31.3 -26.5 -27.8 -26.4 -2.8 0.46 0.63
    SB4 7 777.00 O2yj -44.2 -29.9 -27.5 -26.2 -26.5 -6.7 -151 -99 -81 -56 0.75 0.91
    SB4-3H 7 386.00~8 179.64 O2yj+O1-2y -46.9 -33.5 -28.9 -30.4 -28.1 -2.3 -146 -99 0.50 0.68
    SB4-1H 7 397.00~8 036.61 O2yj -47.4 -34.4 -29.8 -31.9 -30.1 -4.7 0.47 0.65
    8号带 ST1 7 874.00 O2yj+O1-2y -39.2 -32.2 -30.3 -29.1 -1.6 -108 1.55 1.54
    SB802Xa 7 827.40~8 396.55 O2yj+O1-2y -42.1 -33.2 -32.0 -32.5 -30.7 -42.1 1.01 1.14
    SB8Xa 7 737.50~8 396.00 O2yj+O1-2y -42.4 -33.6 -31.7 -32.4 -31.7 -42.4 0.97 1.10
    12号带 SB122Xa 7 527.76~8 287.00 O2yj+O1-2y -41.4 1.12 1.22
    SB12Xa 7 289.68~8 520.00 O2yj+O1-2y -41.4 1.12 1.22
    14号带 SN1 6 528.40~6 690.00 O2yj+O1-2y -40.2 -28.1 -28.2 -29.0 -25.9 -0.3 -129 1.34 1.39
    SN1b 6 528.40~6 690.00 O2yj+O1-2y -38.3 -27.3 -23.8 1.77 1.70
    顺南地区 SN4 6 299.88~6 681.00 O2yj+O1-2y -37.1 -31.5 -25.5 -122 -90 2.10 1.93
    SN4b 6 299.90~6 681.00 O2yj+O1-2y -37.8 -32.4 1.90 1.79
    SN4b 6 299.90~6 681.00 O2yj+O1-2y -37.8 -32.6 1.90 1.79
    SN4b 6 299.90~6 681.00 O2yj+O1-2y -37.5 -32.2 1.98 1.85
    SN401 6 457.07 O2yj+O1-2y -38.9 -29.2 1.77 1.70
    SN401 6 457.07 O1-2y -38.3 -29.7 -21.8 -19.6 -16.8 -127 1.62 1.59
    SN5b 7 176.50~7 209.90 O1-2y -35.9 -27.7 -20.8 -124 2.50 2.19
    SN5b 7 176.50~7 209.90 O1-2y -37.1 2.10 1.93
    SN5b 7 176.50~7 209.90 O1-2y -36.8 2.20 1.99
    SN501 6 889.00~7 168.00 O1-2y -36.0 -29.8 -27.0 -3.2 2.36 2.10
    SN5-1 6 939.80~7 218.29 O1-2y -35.2 -3.0 2.77 2.36
    SN5-2 6 918.43~7 141.43 O1-2y -35.5 -2.5 2.56 2.29
    SN7 6 367.64~6 651.60 O2yj+O1-2y -37.5 -27.4 1.98 1.85
    SN7b 6 367.64~6 561.60 O2yj+O1-2y -36.3 -26.7 -23.1 -20.8 -20.4 -134 2.36 2.10
    SN7 6 367.64~7 276.00 O2yj+O1-2y -36.0 2.47 2.17
    注:a数据来自参考文献[16];b数据来自参考文献[29];Ro1计算公式参见文献[32]);Ro2计算公式参见文献[33])。
    下载: 导出CSV

    表  3  塔里木盆地顺北地区典型油型气成熟度计算结果

    Table  3.   Calculation of maturity of typical oil-type gas in Shunbei area, Tarim Basin

    断裂带或地区 Ro1/% Ro2/% Ro3/% Ro4/% Ro5/% Ro6/% Ro7/%
    5号带南段 0.41~0.61 0.58~0.78 14.30~19.30 0.77~1.00 1.20~1.55 1.32~1.58 1.25~1.60
    4号带 0.46~0.75 0.63~0.91 12.00~16.30 0.81~1.16 1.23~1.40 1.30~1.50 1.28~1.50
    8号带 0.97~1.55 1.10~1.54 7.00~8.90 1.40~1.96 1.30~1.40 1.28~1.35 1.38~1.52
    12号带 1.12 1.22 1.56
    14号带 1.34~1.77 1.39~1.70 11.00~12.10 1.77~2.16 1.52~1.60 1.50~1.65
    顺南地区 1.62~2.77 1.59~2.36 5.20~10.10 2.98~3.00 1.38~1.65 1.50~1.70 1.40~1.75
    注:Ro1参见文献[32];Ro2参见文献[33];Ro3参见文献[37];Ro4参见文献[38];Ro5参见文献[39];Ro6参见文献[39];Ro7参见文献[40]。
    下载: 导出CSV
  • [1] 朱光有, 张水昌. 中国深层油气成藏条件与勘探潜力[J]. 石油学报, 2009, 30(6): 793-802.

    ZHU Guangyou, ZHANG Shuichang. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China[J]. Acta Petrolei Sinica, 2009, 30(6): 793-802.
    [2] 关晓东, 郭磊. 深层-超深层油气成藏研究新进展及展望[J]. 石油实验地质, 2023, 45(2): 203-209.

    GUAN Xiaodong, GUO Lei. New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J]. Petroleum Geology & Experiment, 2023, 45(2): 203-209.
    [3] 张水昌, 朱光有, 杨海军, 等. 塔里木盆地北部奥陶系油气相态及其成因分析[J]. 岩石学报, 2011, 27(8): 2447-2460.

    ZHANG Shuichang, ZHU Guangyou, YANG Haijun, et al. The phases of Ordovician hydrocarbon and their origin in the Tabei Uplift, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2447-2460.
    [4] 张水昌, 苏劲, 张斌, 等. 塔里木盆地深层海相轻质油/凝析油的成因机制与控制因素[J]. 石油学报, 2021, 42(12): 1566-1580.

    ZHANG Shuichang, SU Jin, ZHANG Bin, et al. Genetic mechanism and controlling factors of deep marine light oil and condensate oil in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(12): 1566-1580.
    [5] 贾承造, 张水昌. 中国海相超深层油气形成[J]. 地质学报, 2023, 97(9): 2775-2801.

    JIA Chengzao, ZHANG Shuichang. The formation of marine ultra-deep petroleum in China[J]. Acta Geologica Sinica, 2023, 97(9): 2775-2801.
    [6] 漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.

    QI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1): 102-111.
    [7] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51.

    QI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51.
    [8] 马安来, 漆立新. 顺北地区四号断裂带奥陶系超深层油气地球化学特征与相态差异性成因[J]. 地学前缘, 2023, 30(6): 247-262.

    MA Anlai, QI Lixin. Geochemical characteristics and phase beha-vior of the Ordovician ultra-deep reservoir fluid, No. 4 fault, northern Shuntuoguole, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 247-262.
    [9] 马安来, 金之钧, 李慧莉, 等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学, 2020, 45(5): 1737-1753.

    MA Anlai, JIN Zhijun, LI Huili, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of north Shuntuoguole area of Tarim Basin, NW China[J]. Earth Science, 2020, 45(5): 1737-1753.
    [10] 漆立新, 丁勇. 塔里木盆地顺北地区东西部海相油气成藏差异[J]. 石油实验地质, 2023, 45(1): 20-28. doi: 10.11781/sysydz202301020

    QI Lixin, DING Yong. Differences in marine hydrocarbon accumulation between the eastern and western parts of Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(1): 20-28. doi: 10.11781/sysydz202301020
    [11] 云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797.

    YUN Lu, CAO Zicheng. Hydrocarbon enrichment pattern and exploration potential of the Ordovician in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 788-797.
    [12] 马安来, 何治亮, 云露, 等. 塔里木盆地顺北地区奥陶系超深层天然气地球化学特征及成因[J]. 天然气地球科学, 2021, 32(7): 1047-1060.

    MA Anlai, HE Zhiliang, YUN Lu, et al. The geochemical characteristics and origin of Ordovician ultra-deep natural gas in the north Shuntuoguole area, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2021, 32(7): 1047-1060.
    [13] JIA Zhenjie, HOU Dujie, ZHU Xiuxiang, et al. Geochemical characteristics of Ordovician ultra-deep natural gas in the north Shuntuoguole area, Tarim Basin, NW China[J]. Petroleum Science and Technology, 2024, 42(8): 903-918. doi: 10.1080/10916466.2022.2164014
    [14] 李斌, 姜潇俊, 赵星星, 等. 塔里木盆地台盆过渡带多相态油气藏成因及差异富集模式: 以玉科地区奥陶系为例[J]. 石油学报, 2023, 44(5): 794-808.

    LI Bin, JIANG Xiaojun, ZHAO Xingxing, et al. Genesis and differential enrichment model of multiphase reservoirs in platform-basin transitional zone of Tarim Basin: a case study of the Ordovician in Yuke area[J]. Acta Petrolei Sinica, 2023, 44(5): 794-808.
    [15] 王清华. 塔里木盆地富满油田凝析气藏成因[J]. 石油勘探与开发, 2023, 50(6): 1128-1139.

    WANG Qinghua. Origin of gas condensate reservoir in Fuman Oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1128-1139.
    [16] 曹自成, 云露, 平宏伟, 等. 塔里木盆地顺北地区奥陶系天然气地球化学与成因[J/OL]. 地质科技通报, 1-16[2024-07-14]. https://doi.org/10.19509/j.cnki.dzkq.tb20240099.

    CAO Zicheng, YUN Lu, PING Hongwei, et al. Geochemistry and origin of Ordovician natural gas in Shunbei area of Tarim Basin[J/OL]. Bulletin of Geological Science and Technology, 1-16[2024-07-14]. https://doi.org/10.19509/j.cnki.dzkq.tb20240099.
    [17] 马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17.

    MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1-17.
    [18] 韩强, 云露, 蒋华山, 等. 塔里木盆地顺北地区奥陶系油气充注过程分析[J]. 吉林大学学报(地球科学版), 2021, 51(3): 645-658.

    HAN Qiang, YUN Lu, JIANG Huashan, et al. Marine oil and gas filling and accumulation process in the north of Shuntuoguole area in northern Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 645-658.
    [19] 朱秀香, 曹自成, 隆辉, 等. 塔里木盆地顺北地区走滑断裂带压扭段和张扭段油气成藏实验模拟及成藏特征研究[J]. 地学前缘, 2023, 30(6): 289-304.

    ZHU Xiuxiang, CAO Zicheng, LONG Hui, et al. Experimental simulation and characteristics of hydrocarbon accumulation in strike-slip fault zone in Shunbei area, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 289-304.
    [20] 马安来, 林会喜, 云露, 等. 塔里木盆地顺托果勒地区奥陶系原油中乙基桥键金刚烷系列的检出及意义[J]. 石油学报, 2022, 43(6): 788-803.

    MA Anlai, LIN Huixi, YUN Lu, et al. Detection of ethanodiamondoids in the Ordovician crude oil from Shuntuoguole area in Tarim Basin and its significance[J]. Acta Petrolei Sinica, 2022, 43(6): 788-803.
    [21] 张继标, 邓尚, 韩俊, 等. 多期构造应力控制走滑断控储层发育机理与差异性研究: 以塔里木盆地顺北地区为例[J]. 石油实验地质, 2024, 46(4): 775-785.

    ZHANG Jibiao, DENG Shang, HAN Jun, et al. Study on development mechanism and variability of strike-slip fault-controlled reservoirs regulated by multi-stage structural stress: a case study of the Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2024, 46(4): 775-785.
    [22] WANG Qi, HAO Fang, CAO Zicheng, et al. Geochemistry and origin of the ultra-deep Ordovician oils in the Shunbei Field, Tarim Basin, China: implications on alteration and mixing[J]. Marine and Petroleum Geology, 2021, 123: 104725. doi: 10.1016/j.marpetgeo.2020.104725
    [23] 余晓, 马安来, 李贤庆, 等. 塔里木盆地顺南1井奥陶系原油中乙基桥键金刚烷化合物的二维气相色谱分析[J]. 石油实验地质, 2023, 45(2): 327-337. doi: 10.11781/sysydz202302327

    YU Xiao, MA Anlai, LI Xianqing, et al. GC×GC-TOFMS analysis of ethanodiamondoids in Ordovician oil from well SN1, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(2): 327-337. doi: 10.11781/sysydz202302327
    [24] 马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018, 39(1): 42-53.

    MA Anlai, JIN Zhijun, ZHU Cuishan. Detection and research significance of thiadiamondoids from crude oil in well Shunnan 1, Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(1): 42-53.
    [25] 周肖肖. 塔里木盆地塔中地区奥陶系碳酸盐盐岩油气成藏模式研究[D]. 北京: 中国石油大学(北京), 2022.

    ZHOU Xiaoxiao. Accumulation mode of hydrocarbon in the Ordovician carbonate reservoir in the Tazhong area, Tarim Basin[D]. Beijing: China University of Petroleum (Beijing), 2022.
    [26] ZHU Guangyou, ZHANG Baotao, YANG Haijun, et al. Origin of deep strata gas of Tazhong in Tarim Basin, China[J]. Organic Geochemistry, 2014, 74: 85-97. doi: 10.1016/j.orggeochem.2014.03.003
    [27] PAN Yinglu, YU Bingsong, ZHANG Baotao, et al. Origins and differences in condensate gas reservoirs between east and west of Tazhong Uplift in the Ordovician Tarim Basin, NW China[J]. Journal of Earth Science, 2017, 28(2): 367-380. doi: 10.1007/s12583-015-0582-3
    [28] 吴萧. 轮古东奥陶系油气藏类型与主控因素分析[D]. 北京: 中国石油大学(北京), 2016.

    WU Xiao. The types and main controlling factors of Ordovician reservoirs in eastern Lungu[D]. Beijing: China University of Petroleum (Beijing), 2016.
    [29] 王铁冠, 宋到福, 李美俊, 等. 塔里木盆地顺南-古城地区奥陶系鹰山组天然气气源与深层天然气勘探前景[J]. 石油与天然气地质, 2014, 35(6): 753-762.

    WANG Tieguan, SONG Daofu, LI Meijun, et al. Natural gas source and deep gas exploration potential of the Ordovician Yingshan Formation in the Shunnan-Gucheng region, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 753-762.
    [30] 赵文智, 朱光有, 苏劲, 等. 中国海相油气多期充注与成藏聚集模式研究: 以塔里木盆地轮古东地区为例[J]. 岩石学报, 2012, 28(3): 709-721.

    ZHAO Wenzhi, ZHU Guangyou, SU Jin, et al. Study on the multi-stage charging and accumulation model of Chinese marine petroleum: example from eastern Lungu area in the Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(3): 709-721.
    [31] 王清华, 杨海军, 张银涛, 等. 塔里木盆地富满油田富东1井奥陶系重大发现及意义[J]. 中国石油勘探, 2023, 28(1): 47-58.

    WANG Qinghua, YANG Haijun, ZHANG Yintao, et al. Great discovery and its significance in the Ordovician in well Fudong 1 in Fuman Oilfield, Tarim Basin[J]. China Petroleum Exploration, 2023, 28(1): 47-58.
    [32] 戴金星. 各类烷烃气的鉴别[J]. 中国科学(B辑), 1992(2): 185-193.

    DAI Jinxing. Identification of various alkane gases[J]. Science in China(Series B: Chemistry, Life Sciences & Earth Sciences), 1992, 35(10): 1246-1257.
    [33] 沈平, 陈践发, 陶明信, 等. 莺歌海盆地天然气气源及运移的地球化学特征[J]. 天然气地球科学, 1996, 7(1): 9-16.

    SHEN Ping, CHEN Jianfa, TAO Mingxin, et al. Geochemical characteristics of natural gas source and migration in Yinggehai Basin[J]. Natural Gas Geoscience, 1996, 7(1): 9-16.
    [34] BERNARD B B, BROOKS J M, SACKETT W M. Natural gas seepage in the Gulf of Mexico[J]. Earth and Planetary Science Letters, 1976, 31(1): 48-54. doi: 10.1016/0012-821X(76)90095-9
    [35] MILKOV A V, ETIOPE G. Revised genetic diagrams for natural gases based on a global dataset of >20, 000 samples[J]. Organic Geochemistry, 2018, 125: 109-120. doi: 10.1016/j.orggeochem.2018.09.002
    [36] WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geo-logy, 1999, 161(1/3): 291-314.
    [37] ZHANG Shuichang, SU Jin, WANG Xiaomei, et al. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China: Part 3. Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations[J]. Organic Geochemistry, 2011, 42(11): 1394-1410. doi: 10.1016/j.orggeochem.2011.08.013
    [38] 黄第藩, 赵孟军, 刘宝泉, 等. 塔里木盆地东部天然气的成因类型及其成熟度判识[J]. 中国科学(D辑), 1996, 26(4): 365-372.

    HUANG Difan, ZHAO Mengjun, LIU Baoquan, et al. Genetic types of natural gases and their maturity discrimination in the east of Tarim Basin[J]. Science in China (Series D: Earth Sciences), 1996, 39(6): 659-669.
    [39] ZUMBERGE J E, ROCHER D, REED J D. Thermal maturity differences in oils produced from Lower Permian Wolfcamp A, B & C laterals, Midland Basin[C]//Proceedings of the Unconventional Resources Technology Conference. Austin: SEG, 2017.
    [40] 仝志刚, 李友川, 何将启, 等. 渤海海域渤中凹陷渤中19-6大型凝析气田天然气来源探讨[J]. 石油实验地质, 2022, 44(2): 324-330.

    TONG Zhigang, LI Youchuan, HE Jiangqi, et al. Gas source of BZ19-6 condensate gas field in Bozhong Sag, Bohai Sea area[J]. Petroleum Geology & Experiment, 2022, 44(2): 324-330.
    [41] 李剑, 李志生, 王晓波, 等. 多元天然气成因判识新指标及图版[J]. 石油勘探与开发, 2017, 44(4): 503-512.

    LI Jian, LI Zhisheng, WANG Xiaobao, et al. New indexes and charts for genesis identification of multiple natural gases[J]. Petroleum Exploration and Development, 2017, 44(4): 503-512.
    [42] LORANT F, PRINZHOFER A, BEHAR F, et al. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases[J]. Chemical Geology, 1998, 147(3/4): 249-264.
    [43] 张水昌, 朱光有, 何坤. 硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J]. 岩石学报, 2011, 27(3): 809-826.

    ZHANG Shuichang, ZHU Guangyou, HE Kun. The effects of thermochemical sulfate reduction on occurrence of oil-cracking gas and reformation of deep carbonate reservoir and the interaction mechanisms[J]. Acta Petrologica Sinica, 2011, 27(3): 809-826.
    [44] 张水昌, 帅燕华, 何坤, 等. 硫酸盐热化学还原作用的启动机制研究[J]. 岩石学报, 2012, 28(3): 739-748.

    ZHANG Shuichang, SHUAI Yanhua, HE Kun, et al. Research on the initiation mechanism of thermochemical sulfate reduction (TSR)[J]. Acta Petrologica Sinica, 2012, 28(3): 739-748.
    [45] MA Anlai, ZHAN Zhaowen, ZHU Cuishan, et al. Formation and evolution of thiadiamondoids in petroleum: evidence from thermochemical sulfate reduction simulation experiments with 1, 3-dimethyladamantane[J]. Energy Geoscience, 2025, 6(3): 100440. doi: 10.1016/j.engeos.2025.100440
    [46] MA Anlai, JIN Zhijun, ZHU Cuishan, et al. Formation mechanism of thiadiamondoids: evidence from thermochemical sulfate reduction simulation experiments with model compounds[J]. Organic Geochemistry, 2023, 177: 104554. doi: 10.1016/j.orggeochem.2022.104554
    [47] MA Anlai. Kinetics of oil-cracking for different types of marine oils from Tahe Oilfield, Tarim Basin, NW China[J]. Journal of Natural Gas Geoscience, 2016, 1(1): 35-43. doi: 10.1016/j.jnggs.2016.03.001
    [48] 马安来, 金之钧, 刘金钟. 塔里木盆地寒武系深层油气赋存相态研究[J]. 石油实验地质, 2015, 37(6): 681-688.

    MA Anlai, JIN Zhijun, LIU Jinzhong. Hydrocarbon phase in the deep Cambrian of the Tarim Basin[J]. Petroleum Geology & Experiment, 2015, 37(6): 681-688.
    [49] 吴小奇, 刘全有, 陶小晚, 等. 塔里木盆地哈拉哈塘凹陷天然气地球化学特征[J]. 地球化学, 2014, 43(5): 477-488.

    WU Xiaoqi, LIU Quanyou, TAO Xiaowan, et al. Geochemical characteristics of natural gas from Halahatang Sag in the Tarim Basin[J]. Geochimica, 2014, 43(5): 477-488.
    [50] 吴小奇, 陶小晚, 刘景东. 塔里木盆地轮南地区天然气地球化学特征和成因类型[J]. 天然气地球科学, 2014, 25(1): 53-61.

    WU Xiaoqi, TAO Xiaowan, LIU Jingdong. Geochemical characteristics and genetic types of natural gas from Lunnan area in Tarim Basin[J]. Natural Gas Geoscience, 2014, 25(1): 53-61.
    [51] 朱光有, 张水昌, 梁英波, 等. 四川盆地天然气特征及气源[J]. 地学前缘, 2006, 13(2): 234-248.

    ZHU Guangyou, ZHANG Shuichang, LIANG Yingbo, et al. The characteristics of natural gas in Sichuan Basin and its sources[J]. Earth Science Frontiers, 2006, 13(2): 234-248.
    [52] CHUNG H M, GORMLY J R, SQUIRES R M. Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution[J]. Chemical Geology, 1988, 71(1/3): 97-104.
    [53] ZOU Yanrong, CAI Yulan, ZHANG Chongchun, et al. Variations of natural gas carbon isotope-type curves and their interpretation: a case study[J]. Organic Geochemistry, 2007, 38(8): 1398-1415. doi: 10.1016/j.orggeochem.2007.03.002
    [54] QIAO Rongzhen, LI Meijun, ZHANG Donglin, et al. Geochemistry and accumulation of the ultra-deep Ordovician oils in the Shunbei Oilfield, Tarim Basin: coupling of reservoir secondary processes and filling events[J]. Marine and Petroleum Geology, 2024, 167: 106959. doi: 10.1016/j.marpetgeo.2024.106959
    [55] LU Zhongdeng, PING Hongwei, CHEN Honghan, et al. Geochemical characteristics of Ordovician crude oils in the F17 strike-slip fault zone of the Fuman Oilfield, Tarim Basin: implications for ultra-deep hydrocarbon accumulation in the Tarim Basin[J]. Marine and Petroleum Geology, 2024, 163: 106800. doi: 10.1016/j.marpetgeo.2024.106800
    [56] 蒋子月. 塔里木盆地阿满过渡带奥陶系储层成藏期温压特征与油气相态演化[D]. 青岛: 中国石油大学(华东), 2021.

    JIANG Ziyue. P-T and phase evolution of hydrocarbon in reservoirs charging periods in the transitional zone between the Awati and Manjiaer depressions, Tarim Basin[D]. Qingdao: China University of Petroleum (East China), 2021.
    [57] 马安来, 林会喜, 云露, 等. 塔里木盆地顺北地区奥陶系超深层原油金刚烷化合物分布及意义[J]. 天然气地球科学, 2021, 32(3): 334-346.

    MA Anlai, LIN Huixi, YUN Lu, et al. Characteristics of diamondoids in oils from the ultra-deep Ordovician in the north Shuntuoguole area in Tarim Basin, NW China[J]. Natural Gas Geoscience, 2021, 32(3): 334-346.
    [58] 李慧莉, 马安来, 蔡勋育, 等. 塔里木盆地顺北地区奥陶系超深层原油裂解动力学及地质意义[J]. 石油实验地质, 2021, 43(5): 818-825.

    LI Huili, MA Anlai, CAI Xunyu, et al. Kinetics of oil-cracking of ultra-deep Ordovician oil in the north Shuntuoguole area of Tarim Basin and its geological implications[J]. Petroleum Geo-logy & Experiment, 2021, 43(5): 818-825.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  4
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 修回日期:  2025-08-09
  • 刊出日期:  2025-09-28

目录

    /

    返回文章
    返回