Differential characteristics of internal structures of strike-slip faults and their multiscale interactive identification mode: a case study of Carboniferous volcanic rocks in Chepaizi Uplift, Junggar Basin
-
摘要: 准噶尔盆地车排子凸起石炭系发育多期压扭性走滑断裂,其顶部风化严重,非均质性强,成层性差,标志层不明显,导致断裂识别难度大。为揭示断裂带内部结构单元特征并建立其识别方法,基于野外地质调查,对走滑断裂内部结构进行精细解析,结合岩心、测井、地震资料及分析测试,明确不同级别压扭性走滑断裂内部结构单元差异特征,在此基础上创新建立了多尺度交互标定识别模式。结果显示:走滑断裂内部包括断层核、滑动破碎带、诱导裂缝带3个结构单元,4级及以上断裂发育完整的3个单元5个带,5级断裂不发育断层核;断层核发育断层泥,胶结严重、致密、几乎不具渗透性,滑动破碎带和诱导裂缝带发育多组裂缝,并伴生溶蚀孔洞,AC及CAL值较高,DEN值较低,前者物性更好;对于同一断裂,主动盘的裂缝发育程度与规模均优于被动盘;从原岩到断裂带再到原岩,岩心破碎程度先增高后降低,AC及CAL值先增大后减小,DEN值先减小后增大,成像测井图像先变暗后变亮。该识别模式不仅实现了断裂内部结构的定量化表征,同时,也为缺少地质资料区域的断裂预测提供了新方法,对明确走滑断裂控藏规律具有重要实践价值。Abstract: Multi-phase transpressive strike-slip faults are well developed in the Carboniferous strata of the Chepaizi Uplift, Junggar Basin. These faults are characterized by severe weathering at the top, strong heterogeneity, poor stratification, and indistinct marker beds, resulting in great difficulty in fault identification. To better understand the unit characteristics within the fault zone and establish a method for their identification, a detailed analysis was carried out based on field geological investigations. By integrating core data, well logging, seismic data, and analytical testing, the differential characteristics of internal structural units of transpressive strike-slip faults at different levels were clarified. On this basis, an innovative multiscale interactive calibration identification mode was established. The results showed that the strike-slip faults consist of three structural units: fault core, slip-fracture zone, and induced fracture zone. Faults of level 4 and above exhibit complete development of all three units and five zones, while level 5 faults do not develop fault core. Fault cores develop fault gouge with severe cementation, high compaction, and almost no permeability. In contrast, both the slip-fracture zones and induced fracture zones develop multiple sets of fractures, accompanied by dissolution pores. These zones have higher acoustic time (AC) and caliper (CAL) log values, and lower bulk density (DEN), among which the slip-fracture zones have better physical properties. For the same fault, the active side exhibits more extensive and larger-scale fracture development than the passive side. Across a fault zone, from protolith to fault zone and then back to protolith, the degree of core fragmentation increases first and then decreases; AC and CAL values also increase first and then decrease; DEN values decrease first and then increase; imaging logging images change from dark to bright. The proposed identification mode enables quantitative characterization of internal fault structures and provides a method for fracture prediction in areas lacking geological data. This approach holds important practical value for clarifying the controlling roles of strike-slip faults in hydrocarbon accumulation.
-
图 8 准噶尔盆地车排子凸起车浅15井—排682井—排683井地震剖面
剖面位置见图 1。
Figure 8. Seismic profile crossing wells Cheqian 15, Pai 682, and Pai 683 in Chepaizi uplift, Junggar Basin
表 1 准噶尔盆地车排子凸起柳树沟石炭系F1与F2断裂剖面特征要素统计
Table 1. Statistics of characteristic elements of fracture profiles for Carboniferous F1 and F2 faults in Liushugou site, Chepaizi Uplift, Junggar Basin
断裂名称 断层盘 内部结构单元 宽度/m 裂缝组数/组 裂缝密度/(条/cm) 裂缝开度/cm 充填程度 柳树沟F1断裂 主动盘 诱导裂缝带 12.3 4 1.7 0.1~1.5 半充填 主动盘 滑动破碎带 7.4 5 3.8 0.1~2.0 半充填 断层核 0.5 被动盘 滑动破碎带 3.6 5 1.6 0.1~1.5 半充填 被动盘 诱导裂缝带 7.7 4 1.2 0.1~1.0 半充填 柳树沟F2断裂 主动盘 诱导裂缝带 0.6 3 1.6 0.1~0.5 全充填 主、被动盘 滑动破碎带 0.8 4 2.3 0.1~1.0 全充填 被动盘 诱导裂缝带 0.6 3 1.4 0.1~0.5 全充填 -
[1] 王启超, 刘光祥, 吴疆, 等. 鄂尔多斯盆地旬宜地区下古生界走滑断裂特征与油气勘探意义[J]. 石油实验地质, 2024, 46(2): 342-353.WANG Qichao, LIU Guangxiang, WU Jiang, et al. Characteristics of Lower Paleozoic strike-slip faults and their significance for oil and gas exploration in Xunyi-Yijun area, Ordos Basin[J]. Petroleum Geology & Experiment, 2024, 46(2): 342-353. [2] 宁飞, 金之钧, 张仲培, 等. 塔中北坡走滑断裂成因机理与油气成藏[J]. 石油与天然气地质, 2018, 39(1): 98-106.NING Fei, JIN Zhijun, ZHANG Zhongpei, et al. Mechanism of strike-slip faulting and hydrocarbon accumulation in northern slope of Tazhong area[J]. Oil & Gas Geology, 2018, 39(1): 98-106. [3] 马德波, 邬光辉, 朱永峰, 等. 塔里木盆地深层走滑断层分段特征及对油气富集的控制: 以塔北地区哈拉哈塘油田奥陶系走滑断层为例[J]. 地学前缘, 2019, 26(1): 225-237.MA Debo, WU Guanghui, ZHU Yongfeng, et al. Segmentation characteristics of deep strike slip faults in the Tarim Basin and its control on hydrocarbon enrichment: taking the Ordovician strike slip fault in the Halahatang Oilfield in the Tabei area as an example[J]. Earth Science Frontiers, 2019, 26(1): 225-237. [4] 冯建伟, 郭宏辉, 汪如军, 等. 塔里木盆地塔北地区深层走滑断裂分段性成因机制[J]. 地球科学, 2023, 48(7): 2506-2519.FENG Jianwei, GUO Honghui, WANG Rujun, et al. Segmentation genesis mechanism of strike‐slip fracture of deep carbonate rocks in Tabei area, Tarim Basin[J]. Earth Science, 2023, 48(7): 2506-2519. [5] 王孝艳. 致密岩石中走滑断裂内部结构及与油气成藏[D]. 大庆: 东北石油大学, 2015.WANG Xiaoyan. Internal structure of strike-slip fault zones and petroleum accumulation in low-non porosity rocks[D]. Daqing: Northeast Petroleum University, 2015. [6] 罗群, 王千军, 杨威, 等. 走滑断裂内部结构渗透差异特征及其输导控藏模式[J]. 地球科学, 2023, 48(6): 2342-2360.LUO Qun, WANG Qianjun, YANG Wei, et al. Internal structural units, differential characteristics of permeability and their transport, shielding and reservoir control modes of strike-slip faults[J]. Earth Science, 2023, 48(6): 2342-2360. [7] 陈平, 李明瑞, 李维, 等. 鄂尔多斯盆地东部高家堡地区下古生界断裂分层变形特征及形成机制[J]. 石油实验地质, 2024, 46(3): 542-552.CHEN Ping, LI Mingrui, LI Wei, et al. Characteristics and formation mechanism of stratified deformation of Lower Paleozoic faults in Gaojiapu area, eastern Ordos Basin[J]. Petroleum Geology & Experiment, 2024, 46(3): 542-552. [8] MARFURT K J, KIRLIN R L, FARMER S L, et al. 3-D seismic attributes using a semblance-based coherency algorithm[J]. Geophysics, 1998, 63(4): 1122-1479. doi: 10.1190/1.1444411 [9] 仲伟军, 姚卫江, 贾春明, 等. 地震多属性断裂识别技术在中拐凸起石炭系中的应用[J]. 石油地球物理勘探, 2017, 52(S2): 135-139.ZHONG Weijun, YAO Weijiang, JIA Chunming, et al. Fault and fracture identification in Carboniferous, Zhongguai Uplift, Junggar Basin with seismic multiattributes[J]. Oil Geophysical Prospecting, 2017, 52(S2): 135-139. [10] 王万里, 李海山, 魏新建, 等. 基于构造导向滤波的多道反褶积方法及应用[J]. 石油地球物理勘探, 2023, 58(2): 340-344.WANG Wanli, LI Haishan, WEI Xinjian, et al. Multichannel deconvolution method based on structure-oriented filtering and its application[J]. Oil Geophysical Prospecting, 2023, 58(2): 340-344. [11] 姜自然. 顺北油田奥陶系断裂识别及其油气评价研究[D]. 成都: 成都理工大学, 2019.JIANG Ziran. Study on Ordovician faults identification and petroleum evaluation in Shunbei Oilfield[D]. Chengdu: Chengdu University of Technology, 2019. [12] 隆雨辰, 李俊, 王志章, 等. 综合蚂蚁体及曲率属性的断裂识别方法及应用[J]. 油气藏评价与开发, 2017, 7(4): 6-9.LONG Yuchen, LI Jun, WANG Zhizhang, et al. Fracture identification methods and applications of integrated ant body and curvature attribute[J]. Reservoir Evaluation and Development, 2017, 7(4): 6-9. [13] 陈登超, 杨贵丽, 马立驰, 等. 潍北凹陷走滑断裂体系特征及其控藏作用[J]. 地质学报, 2020, 94(8): 2410-2421.CHEN Dengchao, YANG Guili, MA Lichi, et al. Characteristics of the strike-slip fault system and their control actions on the hydrocarbon accumulation for Weibei Sag[J]. Acta Geologica Sinica, 2020, 94(8): 2410-2421. [14] 何骁, 唐青松, 邬光辉, 等. 四川盆地安岳气田震旦系走滑断裂控储作用[J]. 石油勘探与开发, 2023, 50(6): 1116-1127.HE Xiao, TANG Qingsong, WU Guanghui, et al. Control of strike-slip faults on Sinian carbonate reservoirs in Anyue Gas Field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1116-1127. [15] 张仲培, 徐勤琪, 刘士林, 等. 塔里木盆地巴麦地区东段北东向走滑断裂体系特征及油气地质意义[J]. 石油实验地质, 2023, 45(4): 761-769. doi: 10.11781/sysydz202304761ZHANG Zhongpei, XU Qinqi, LIU Shilin, et al. Characteristics of NE strike-slip fault system in the eastern section of Bachu- Maigaiti area, Tarim Basin and its oil-gas geological significance[J]. Petroleum Geology & Experiment, 2023, 45(4): 761-769. doi: 10.11781/sysydz202304761 [16] CROWELL J C. Displacement along the San Andreas fault, California[M]//CROWELL J C. Displacement Along the San Andreas Fault, California. New York: Geological Society of America, 1962. [17] 陈伟, 吴智平, 侯峰, 等. 断裂带内部结构特征及其与油气运聚关系[J]. 石油学报, 2010, 31(5): 774-780.CHEN Wei, WU Zhiping, HOU Feng, et al. Internal structures of fault zones and their relationship with hydrocarbon migration and accumulation[J]. Acta Petrolei Sinica, 2010, 31(5): 774-780. [18] 孟凡超, 操应长, 崔岩, 等. 准噶尔盆地西缘车排子凸起石炭系火山岩储层成因[J]. 中国石油大学学报(自然科学版), 2016, 40(5): 22-31.MENG Fanchao, CAO Yingchang, CUI Yan, et al. Genesis of Carboniferous volcanic reservoirs in Chepaizi salient in western margin of Junggar Basin[J]. Journal of China University of Petroleum, 2016, 40(5): 22-31. [19] 赵凡, 贾承造, 袁剑英, 等. 柴达木盆地西部走滑相关断裂特征及其控藏作用[J]. 地质论评, 2012, 58(4): 660-670.ZHAO Fan, JIA Chengzao, YUAN Jianying, et al. Study on strike-slip fault and its control effect on oil and gas accumulation in western Qaidam Basin, China[J]. Geological Review, 2012, 58(4): 660-670. [20] 郑和荣, 胡宗全, 云露, 等. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 2022, 29(6): 224-238.ZHENG Herong, HU Zongquan, YUN Lu, et al. Strike-slip faults in marine cratonic basins in China: development characteristics and controls on hydrocarbon accumulation[J]. Earth Science Frontiers, 2022, 29(6): 224-238. [21] 蔡振忠, 张辉, 徐珂, 等. 超深层断控碳酸盐岩油藏地质力学建模及其在开发中的应用[J]. 石油实验地质, 2024, 46(4): 868-879.CAI Zhenzhong, ZHANG Hui, XU Ke, et al. Geomechanics modeling of ultra-deep fault-controlled carbonate reservoirs and its application in development[J]. Petroleum Geology & Experiment, 2024, 46(4): 868-879. [22] 杨志冬, 张梦露, 张欣, 等. 准噶尔盆地车排子凸起火山岩储层特征及主控因素[J]. 云南大学学报(自然科学版), 2020, 42(3): 507-514.YANG Zhidong, ZHANG Menglu, ZHANG Xin, et al. Characteristics and main controlling factors of igneous reservoirs in Chepaizi Uplift, Junggar Basin[J]. Journal of Yunnan University(Natural Sciences Edition), 2020, 42(3): 507-514. [23] 董大伟. 准噶尔盆地车排子凸起断层特征及对油气成藏的控制[D]. 青岛: 中国石油大学, 2015.DONG Dawei. Fault characteristies of Chepaizi Uplift in Junggar Basin and its control to oil-gas accumulation[D]. Qingdao: China University of Petroleum, 2015. [24] 杨柠瑞. 车排子凸起石炭系烃源岩地化特征及生烃潜力评价[D]. 青岛: 中国石油大学, 2018.YANG Ruining. Geochemical characteristics and evaluation of hydrocarbon generation potential of Chepaizi source rocks from Carboniferous[D]. Qingdao: China University of Petroleum, 2018. [25] 樊晓伊, 姚光庆, 杨振峰, 等. 准噶尔盆地车排子凸起多物源复杂沉积体系中的地震沉积学[J]. 地球科学, 2018, 43(3): 786-801.FAN Xiaoyi, YAO Guangqing, YANG Zhenfeng, et al. Seismic sedimentology in multiple sources-complex depositional systems of Chepaizi Uplift, Junggar Basin[J]. Earth Science, 2018, 43(3): 786-801. [26] 张奉, 杨东根. 春风油田石炭系火山岩储层岩性识别[J]. 石油地质与工程, 2016, 30(3): 48-51.ZHANG Feng, YANG Donggen. Lithology identification of Carboniferous volcanic rock reservoir in Chunfeng Oilfield[J]. Petroleum Geology and Engineering, 2016, 30(3): 48-51. [27] 刘得光, 倪云燕, 陈建平, 等. 准噶尔盆地西北缘车排子凸起原油类型与油源[J]. 地质学报, 2023, 97(5): 1576-1597.LIU Deguang, NI Yunyan, CHEN Jianping, et al. Types and sources of crude oil in the Chepaizi Uplift, northwest margin of the Junggar Basin[J]. Acta Geologica Sinica, 2023, 97(5): 1576-1597. [28] 桂诗琦, 罗群, 贺小标, 等. 准噶尔盆地车排子凸起石炭系油气成藏主控因素及成藏模式[J]. 岩性油气藏, 2025, 37(1): 126-136.GUI Shiqi, LUO Qun, HE Xiaobiao, et al. Main controlling factors and hydrocarbon accumulation model of Carboniferous reservoir in Chepaizi Uplift, Junggar Basin[J]. Lithologic Reservoirs, 2025, 37(1): 126-136. [29] 王林, 徐佑德, 张曰静, 等. 准噶尔盆地车排子凸起石炭系储层主控因素及发育模式[J]. 东北石油大学学报, 2020, 44(2): 79-90.WANG Lin, XU Youde, ZHANG Yuejing, et al. Predominant factors and development mode of Carboniferous reservoirs in Chepaizi Uplift, Junggar Basin[J]. Journal of Northeast Petroleum University, 2020, 44(2): 79-90. [30] ANDERSON E M. The dynamics of faulting[J]. Transactions of the Edinburgh Geological Society, 1905, 8(3): 387-402. doi: 10.1144/transed.8.3.387 [31] RIEDEL W. Zur mechanik geologischer brucherscheinungen[J]. Centralblatt für Mineralogie, Geologie und Paläontologie, 1929, 8: 345-368. [32] 刘伟, 朱留方, 许东晖, 等. 断裂带结构单元特征及其测井识别方法研究[J]. 测井技术, 2013, 37(5): 495-498.LIU Wei, ZHU Liufang, XU Donghui, et al. On features and logging recognition method of structure unit in fracture belt[J]. Well Logging Technology, 2013, 37(5): 495-498. [33] 张丽辰, 吴孔友, 何文军, 等. 准噶尔盆地北三台凸起断裂结构特征及成岩封闭作用[J]. 地质力学学报, 2018, 24(5): 607-616.ZHANG Lichen, WU Kongyou, HE Wenjun, et al. Structural characteristics and diagenetic sealing of faults in the Beisantai Swell, Junggar Basin[J]. Journal of Geomechanics, 2018, 24(5): 607-616. [34] 孙炜, 李玉凤, 付建伟, 等. 测井及地震裂缝识别研究进展[J]. 地球物理学进展, 2014, 29(3): 1231-1242.SUN Wei, LI Yufeng, FU Jianwei, et al. Review of fracture identification with well logs and seismic data[J]. Progress in Geophysics, 2014, 29(3): 1231-1242. [35] 刘洛夫, 罗群, 乔锦琪, 等. 准噶尔盆地车排子地区新村油田石炭系构造特征与成藏条件[J]. 地质通报, 2018, 37(1): 70-82.LIU Luofu, LUO Qun, QIAO Jinqi, et al. A study of Carboniferous structure characteristics and reservoir-forming conditions in the Xincun Oilfield, Chepaizi area, Junggar Basin[J]. Geological Bulletin of China, 2018, 37(1): 70-82. -