Application of multivariate statistical analysis in oil and source correlation: a case study of mixed-source oils from middle and shallow strata in coastal area of Qikou Sag, Bohai Bay Basin
-
摘要: 渤海湾盆地歧口凹陷滨海地区是近年来大港油田增储上产的重要目标,该地区中—浅层系原油来源复杂,混合严重,次生变化明显。多元统计分析方法是一种高效率、便捷且具有高精度的数据处理手段。近年来,许多学者在不同地区的油气源对比中运用该方法取得了较为丰富的研究成果,但针对多元统计分析在混源油油源对比中的应用研究仍有待进一步加强。为此,以油气地质地球化学理论为指导,在揭示研究区中—浅层系原油(沙一段、东营组、馆陶组、明化镇组)和主力烃源岩(沙三段、沙一段、东三段)地球化学特征的基础上,应用聚类、主成分和判别分析方法,开展油源对比。结果表明,歧口凹陷滨海地区各层系烃源岩成熟度差异较小,沙一中、沙一下烃源岩品质更好;烃源岩生烃母质以混合来源为主,其中沙一中、沙一上和东三段形成于弱还原、淡水条件,沙三段、沙一下烃源岩形成于还原、淡水—微咸水条件。研究区的次生变化以生物降解作用为主,不同层系原油可分为两类:其中Ⅰ类原油分布在沙一段,具有低Pr/Ph值、高三环萜烷的特点,主要以沙三段、沙一下和沙一中烃源岩混合供烃;Ⅱ类原油分布在东营组、馆陶组和明化镇组,具有较高Pr/Ph值、低三环萜烷的特点,主要以沙一上和东三段烃源岩混合供烃。应用判别分析验证这两类油—源,获得初始验证率100%,交叉验证正确率90.0%,表明油源对比结果可靠。研究成果揭示了多元统计分析方法在混源油油源对比中的良好应用前景。Abstract: The coastal area of the Qikou Sag of Bohai Bay Basin has become an important target for increasing reserves and production in the Dagang Oilfield in recent years. In this area, crude oil from the middle and shallow strata of the region exhibited complex origins, severe mixing, and significant secondary alterations. Multivariate statistical analysis is an efficient, convenient, and accurate data processing method. In recent years, many researchers have applied this method to hydrocarbon source correlation in various regions, yielding fruitful research results. However, its application in source correlation of mixed-source oils requires further development. Guided by petroleum geology and geochemistry theory, this study characterized the geochemical characteristics of crude oils from the middle and shallow strata (the first member of the Shahejie Formation, Dongying Formation, Guantao Formation, and Minghuazhen Formation) and main source rocks (the third member of the Shahejie Formation, the first member of the Shahejie Formation, and the third member of the Dongying Formation). Then, cluster analysis, principal component analysis, and discriminant analysis were applied for oil and source correlation. The results demonstrated that the maturity of source rocks in different strata of the coastal area of the Qikou Sag was relatively similar, and the middle and lower units of the first member of the Shahejie Formation had better hydrocarbon quality. The precursor for hydrocarbon generation of these source rocks was mainly of mixed origin. The middle and upper units of the first member of the Shahejie Formation and the third member of the Dongying Formation source rocks were deposited under weakly reducing, freshwater conditions, while the third member of the Shahejie Formation and the lower unit of the first member of the Shahejie Formation source rocks were formed under reducing, fresh to brackish water conditions. The main secondary alteration in the study area was biodegradation. The crude oils from different strata could be classified into two types: Type Ⅰ crude oil, distributed in the first member of the Shahejie Formation, was characterized by low Pr/Ph values and high tricyclic terpane content. It mainly originated from a mixture of source rocks in the third member of the Shahejie Formation and the middle and lower units of the first member of the Shahejie Formation. Type Ⅱ crude oil was distributed in the Dongying Formation, Guantao Formation, and Minghuazhen Formation. It featured high Pr/Ph values and low tricyclic terpane content, and was mainly originated from mixed source rocks in the upper unit of the first member of the Shahejie Formation and the third member of the Dongying Formation. Discriminant analysis was applied to validate the oil and source correlation results, resulting in an initial classification accuracy of 100% and a cross-validation accuracy of 90.0%. These results indicated that the oil and source correlation results were reliable. The study reveals the promising application potential of multivariate statistical analysis method in source correlation for mixed-source oils.
-
图 3 渤海湾盆地歧口凹陷滨海地区烃源岩饱和烃气相色谱、藿烷(m/z=191)、甾烷(m/z=217)质量色谱
Pr=姥鲛烷,Ph=植烷,Tri=三环萜烷,Tet=四环萜烷,Ts=18α(H)-22, 29, 30-三降藿烷,Tm=17α(H)-22, 29, 30-三降藿烷,C30H= C30藿烷,Ga=伽马蜡烷,Preg=孕甾烷,Homopreg=升孕甾烷,DiaC27=C27重排甾烷,C27-C28-C29=ααα20(R) 构型的C27-C28-C29规则甾烷。
Figure 3. Gas chromatograms of saturated hydrocarbons and mass chromatograms of hopanes (m/z=191) and steranes (m/z=217) in source rocks from coastal area of Qikou Sag, Bohai Bay Basin
图 8 渤海湾盆地歧口凹陷滨海地区中浅层原油、各层位烃源岩生标参数交汇图
a.甲基菲分布分数F1与F2关系,F1=[(2-MP)+(3-MP)]/[(1-MP)+(2-MP)+(3-MP)+(9-MP)],F2=(2-MP)/[(1-MP)+(2-MP)+(3-MP)+(9-MP)];b.C29ββ/(αα+ββ)与甾烷C2920S/(20S+20R)关系;c.伽马蜡烷指数(Ga/C30H)与Pr/Ph关系;d.C27-28-29(ααα20(R)C27/ααα20(R)(C27+C28+C29)、(ααα20(R)C28/ααα20(R)(C27+C28+C29)、(ααα20(R)C29/ααα20(R)(C27+C28+C29))三端元交汇图;e.生标参数折线图(Pr/Ph=姥鲛烷/植烷,Pr/nC17=姥鲛烷/正十七烷,Ph/nC18=植烷/正十八烷,TriC19/C21=三环萜烷C19/C21,TriC19/C23=三环萜烷C19/C23,Tri(19+20)/23=三环萜烷(C19+C20)/C23,TriC19-22/C23-26=三环萜烷C19-22/C23-26,TriC23/C30H×10=C23三环萜烷/C30藿烷×10,TriC26/C25=三环萜烷C26/C25,C31R/C30H=C31藿烷(22R)/C30藿烷,Ts/Tm=三降藿烷Ts/Tm,Ole指数×10=奥利烷/C30藿烷× 10,Ga指数×10=伽马蜡烷/C30藿烷×10,35/34-Hop=藿烷C35/C34,Ga/C31H22R=伽马蜡烷/C31藿烷(22R),Ga/2×C29Hop=伽马蜡烷/2×C29藿烷,27/(27+ 28+29)=ααα20(R)C27/ααα20(R)(C27+C28+C29)甾烷,28/(27+28+29)=ααα20(R)C28/ααα20(R) (C27+C28+C29)甾烷,29/(27+28+29)=ααα20(R)C29/ααα20(R)(C27+C28+C29)甾烷。
Figure 8. Cross-plots of biomarker parameters for middle and shallow crude oils and source rocks from different strata in coastal area of Qikou Sag, Bohai Bay Basin
表 1 渤海湾盆地歧口凹陷滨海地区烃源岩地化特征
Table 1. Geochemical characteristics of source rocks in coastal area of Qikou Sag, Bohai Bay Basin
层位 ω(TOC)/% (S1+S2)/(mg/g) HI/(mg/g) Ro/% 沙三段 $\frac{{0.51 \sim 6.61}}{{1.21}} $ $\frac{{0.30 \sim 5.34}}{{2.14}} $ $\frac{{170.20 \sim 730.30}}{{323.56}} $ >1.00 沙一下亚段 $\frac{{0.50 \sim 11.07}}{{6.66}} $ $\frac{{0.80 \sim 32.04}}{{8.44}} $ $\frac{{183.72 \sim 685.28}}{{343.68}} $ 0.72~0.95 沙一中亚段 $\frac{{0.51 \sim 4.30}}{{1.56}} $ $\frac{{10.02 \sim 32.40}}{{13.99}} $ $\frac{{131.52 \sim 666.94}}{{474.91}} $ 0.78~1.37 沙一上亚段 $\frac{{0.55 \sim 3.50}}{{1.45}} $ $\frac{{1.82 \sim 23.42}}{{4.11}} $ $\frac{{174.19 \sim 960.00}}{{354.84}} $ 0.52~0.98 东三段 $\frac{{0.53 \sim 7.66}}{{1.54}} $ $\frac{{0.45 \sim 36.75}}{{5.81}} $ $\frac{{176.05 \sim 583.33}}{{355.64}} $ 0.55~0.65 注:表中公式含义为:$\frac{{最小值 \sim 最大值}}{{平均值}} $。 表 2 渤海湾盆地歧口凹陷滨海地区中浅层原油API度、沥青质、氮硫氧化合物、非烃数据
Table 2. API gravity, asphaltenes, NSO compounds, and non-hydrocarbon data of middle and shallow crude oils from coastal area of Qikou Sag, Bohai Bay Basin
井号 层位 深度/m API/(°) 沥青质与NSO化合物/% 非烃/% Q132 Nm 1 655 34 18.40 14.26 G8-23-1 Nm 1 221 13 40.71 29.30 G9-24-2 Nm 1 275 11 41.74 25.80 G6-24-1 Nm 1 514 23 22.59 16.48 B75 Nm 1 698 24 34.18 26.10 G516 Ng 1 972 31 18.57 11.72 G24 Ng 2 472 33 24.51 20.61 Q133-1 Ng 2 429 32 25.48 16.70 G71 Ng 1 780 23 37.85 29.13 G519 Ng 1 801 21 40.68 33.43 Z19-1 Ed1 2 886 30 20.71 16.97 Z20-30 Ed1 3 097 32 23.83 18.11 Z16 Ed2 3 153 33 19.61 15.47 G580 Ed2 1 611 20 32.44 23.65 GS27-1k Ed3 2 617 31 12.23 9.69 G561 Ed3 2 441 31 13.85 10.72 G556 Ed3 2 541 33 8.72 6.28 G528 Ed3 2 541 34 12.23 8.69 G508-12 Ed3 2 989 28 15.73 11.59 Z7 Ed3 3 020 33 23.27 18.53 MG1 Es1s 3 270 28 9.63 7.35 B1502 Es1z 3 020 29 12.33 9.19 B14-1 Es1x 3 551 35 15.77 13.43 GS33 Es1x 4 114 40 17.09 11.63 GS3 Es1x 3 502 34 17.39 14.11 GS3 Es1x 3 533 32 10.76 8.81 QN3 Es1x 3 324 30 23.31 18.12 表 3 Fisher判别法分类结果
Table 3. Classification results by Fisher discriminant method
分类 预测的群组成员资格 总计/个 Ⅰ类 Ⅱ类 初始验证 计数/个 Ⅰ类 18.0 0.0 18.0 Ⅱ类 0.0 12.0 12.0 百分比/% Ⅰ类 100.0 0.0 100.0 Ⅱ类 0.0 100.0 100.0 交叉验证 计数/个 Ⅰ类 17.0 1.0 18.0 Ⅱ类 2.0 10.0 12.0 百分比/% Ⅰ类 94.4 5.6 100.0 Ⅱ类 16.7 83.3 100.0 初始验证:100.0 %的原始分组观察值已正确地分类。 交叉验证:90.0 %的交叉验证已分组观察值已正确地分类。 -
[1] ZHAN Zhaowen, LIN Xiaohui, ZOU Yanrong, et al. Chemometric differentiation of crude oil families in the southern Dongying Depression, Bohai Bay Basin, China[J]. Organic Geochemistry, 2019, 127: 37-49. doi: 10.1016/j.orggeochem.2018.11.004 [2] ZHANG Liuping, BAI Guoping, ZHAO Xianzheng, et al. Oil-source correlation in the slope of the Qikou Depression in the Bohai Bay Basin with discriminant analysis[J]. Marine and Petroleum Geology, 2019, 109: 641-657. doi: 10.1016/j.marpetgeo.2019.06.055 [3] 孙肖, 魏真真, 王丙贤, 等. 歧口凹陷古近系原油地球化学特征及油源分析[J]. 科学技术与工程, 2020, 20(12): 4671-4679.SUN Xiao, WEI Zhenzhen, WANG Bingxian, et al. Geochemistry and source analysis of oil from Paleogene in Qikou Sag[J]. Science Technology and Engineering, 2020, 20(12): 4671-4679. [4] 周立宏, 陈长伟, 陈家旭, 等. 渤海湾盆地黄骅坳陷致密油气勘探新领域及资源潜力[J]. 石油学报, 2025, 46(1): 154-172.ZHOU Lihong, CHEN Changwei, CHEN Jiaxu, et al. New exploration fields and resource potential of tight oil and gas in Huanghua Depression of Bohai Bay Basin[J]. Acta Petrolei Sinica, 2025, 46(1): 154-172. [5] 周立宏, 陈长伟, 崔宇, 等. 渤海湾盆地黄骅坳陷油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2023, 44(12): 2160-2178.ZHOU Lihong, CHEN Changwei, CUI Yu, et al. New fields, new types and resource potentials of oil-gas exploration in Huanghua Depression of Bohai Bay Basin[J]. Acta Petrolei Sinica, 2023, 44(12): 2160-2178. [6] 赵贤正, 金凤鸣, 周立宏, 等. 渤海湾盆地风险探井歧页1H井沙河街组一段页岩油勘探突破及其意义[J]. 石油学报, 2022, 43(10): 1369-1382.ZHAO Xianzheng, JIN Fengming, ZHOU Lihong, et al. Breakthrough and significance of shale oil exploration in Member 1 of Shahejie Formation of well Qiye1H, a risk exploratory well in Bohai Bay Basin[J]. Acta Petrolei Sinica, 2022, 43(10): 1369-1382. [7] 周立宏, 何海清, 陈长伟, 等. 歧口凹陷滨海斜坡深凹区海探1井东营组勘探突破与启示[J]. 中国石油勘探, 2023, 28(6): 78-89.ZHOU Lihong, HE Haiqing, CHEN Changwei, et al. Exploration breakthrough and enlightenment of Dongying Formationin well Haitan 1 in the deep subsag area in Binhai Slope, Qikou Sag[J]. China Petroleum Exploration, 2023, 28(6): 78-89. [8] 赵贤正, 周立宏, 蒲秀刚, 等. 歧口凹陷歧北次凹沙河街组三段页岩油地质特征与勘探突破[J]. 石油学报, 2020, 41(6): 643-657.ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Geological characteristics and exploration breakthrough of shale oil in Member 3 of Shahejie Formation of Qibei Subsag, Qikou Sag[J]. Acta Petrolei Sinica, 2020, 41(6): 643-657. [9] 罗丽荣, 李剑锋, 赵占良, 等. 河套盆地临河坳陷新生界油源对比及其勘探意义[J]. 中国石油勘探, 2019, 24(3): 323-330.LUO Lirong, Li Jianfeng, Zhao Zhanliang, et al. Cenozoic oil-source correlation and exploration significance in Linhe Depression, the Hetao Basin[J]. China Petroleum Exploration, 2019, 24(3): 323-330. [10] 文璠, 罗群, 董雄英, 等. 断陷盆地顺向断阶带油气充注期次与成藏模式: 以渤海湾盆地歧口凹陷埕北断阶带为例[J]. 石油实验地质, 2023, 45(4): 797-808. doi: 10.11781/sysydz202304797 WEN Fan, LUO Qun, DONG Xiongying, et al. Hydrocarbon charging stage and accumulation mode of forward fault step zone in fault basin: taking the Chengbei fault step zone in Qikou Sag, Bohai Bay Basin as an example[J]. Petroleum Geology & Experiment, 2023, 45(4): 797-808. doi: 10.11781/sysydz202304797 [11] 曲江秀, 查明, 高长海, 等. 大港油田埕北断阶带油气运移、成藏期次及成藏模式[J]. 海相油气地质, 2009, 14(3): 37-45.QU Jiangxiu, ZHA Ming, GAO Changhai, et al. Models of hydrocarbon migration and accumulation in Chengbei fault-step belt in Dagang Oil Field[J]. Marine Origin Petroleum Geology, 2009, 14(3): 37-45. [12] 付广, 李佳静, 于桐. 油源断裂输导油气时期厘定方法的改进及其应用: 以渤海湾盆地歧口凹陷南大港断裂为例[J]. 石油与天然气地质, 2022, 43(6): 1481-1488.Fu Guang, Li Jiajing, Yu Tong. Improvement of method for timing of hydrocarbon migration along source rock-rooted faults and its application: a case of the South Dagang Fault in Qikou Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(6): 1481-1488. [13] 许立青, 李三忠, 索艳慧, 等. 渤海湾盆地大歧口凹陷断裂系统与陆内拉分断陷[J]. 地质科学, 2015, 50(2): 489-502.XU Liqing, LI Sanzhong, SUO Yanhui, et al. Fault system and basin prototype of the Great Qikou Sag, Bohai Bay Basin[J]. Chinese Journal of Geology, 2015, 50(2): 489-502. [14] 周立宏, 陈长伟, 杨飞, 等. 陆相断陷盆地深凹区致密油气成藏模式与勘探实践: 以渤海湾盆地黄骅坳陷为例[J]. 石油学报, 2024, 45(5): 755-770.ZHOU Lihong, CHEN Changwei, YANG Fei, et al. Accumulation models and exploration practice of tight oil and gas in the deep sag areas of continental fault basins: a case study of Huanghua Depression in Bohai Bay Basin[J]. Acta Petrolei Sinica, 2024, 45(5): 755-770. [15] 卢双舫, 张敏, 油气地球化学[M]. 北京: 石油工业出版社, 2008.LU Shuangfang, ZHANG Min. Petroleum Geochemistry[M]. Beijing: Petroleum Industry Press, 2008. [16] 高长海, 张新征, 李豫源, 等. 济阳拗陷生物降解原油地球化学特征及其地质意义[J]. 天然气勘探与开发, 2018, 41(2): 47-54.GAO Changhai, ZHANG Xinzheng, LI Yuyuan, et al. Geochemical characteristics of biodegraded oil, Jiyang Depression: implications for geology[J]. Natural Gas Exploration and Development, 2018, 41(2): 47-54. [17] 马安来, 张水昌, 张大江, 等. 生物降解原油地球化学研究新进展[J]. 地球科学进展, 2005, 20(4): 449-454.MA Anlai, ZHANG Shuichang, ZHANG Dajiang, et al. The advances in the geochemistry of the biodegraded oil[J]. Advances in Earth Science, 2005, 20(4): 449-454. [18] 常象春, 赵万春, 徐佑德, 等. 注水开发过程中原油的生物降解与水洗作用[J]. 石油与天然气地质, 2017, 38(3): 617-625.CHANG Xiangchun, ZHAO Wanchun, XU Youde, et al. Biodegradation and water washing effects on oil during water flooding[J]. Oil & Gas Geology, 2017, 38(3): 617-625. [19] WANG Wenqiang, WANG Tieguan, LI Meijun, et al. The origins of biodegraded oils in sandstone reservoirs in the Termit Basin[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109130. doi: 10.1016/j.petrol.2021.109130 [20] 马遵敬, 陈中红, 吴洛菲, 等. 哈拉阿拉特山西部地区生物降解原油地球化学特征及来源分析[J]. 地球化学, 2020, 49(5): 549-562.MA Zunjing, CHEN Zhonghong, WU Luofei, et al. Geochemical characteristics and source correlation of biodegraded oils from the western Halaalate area[J]. Geochimica, 2020, 49(5): 549-562. [21] CHENG Xiong, HOU Dujie, XU Changgui, et al. Biodegradation of tricyclic terpanes in crude oils from the Bohai Bay Basin[J]. Organic Geochemistry, 2016, 101: 11-21. doi: 10.1016/j.orggeochem.2016.08.007 [22] 马安来. 金刚烷类化合物在有机地球化学中的应用进展[J]. 天然气地球科学, 2016, 27(5): 851-860.MA Anlai. New advancement in application of diamondoids on organic geochemistry[J]. Natural Gas Geoscience, 2016, 27(5): 851-860. [23] WⅡLLIAMS J A, BJORØY M, DOLCATER D L, et al. Biodegradation in south Texas Eocene oils: effects on aromatics and biomarkers[J]. Organic Geochemistry, 1986, 10(1/3): 451-461. [24] WINGERT W S.G.C. -M.S. analysis of diamondoid hydrocarbons in Smackover petroleums[J]. Fuel, 1992, 71(1): 37-43. doi: 10.1016/0016-2361(92)90190-Y [25] GRICE K, ALEXANDER R, KAGI R I. Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oils[J]. Organic Geochemistry, 2000, 31(1): 67-73. doi: 10.1016/S0146-6380(99)00137-0 [26] 王振奇, 于赤灵, 张林晔, 等. 济阳坳陷郑家—王庄油田稠油生物降解程度及影响因素研究[J]. 断块油气田, 2005, 12(1): 4-7.WANG Zhenqi, YU Chiling, ZHANG Linye, et al. Biodegradation level of heavy oil and geological control factors in Zhengjia-Wangzhuang oilfields, Jiyang Depression[J]. Fault-Block Oil & Gas Field, 2005, 12(1): 4-7. [27] 徐勤琪, 储呈林, 郭小文, 等. 塔河油田盐下地区原油地球化学特征及不同期次油气成藏贡献[J]. 石油实验地质, 2024, 46(1): 111-123. doi: 10.11781/sysydz202401111XU Qinqi, CHU Chenglin, GUO Xiaowen, et al. Geochemical characteristics of crude oil and contributions to hydrocarbon accumulation in multiple stages in Tahe subsalt area[J]. Petroleum Geology & Experiment, 2024, 46(1): 111-123. doi: 10.11781/sysydz202401111 [28] KVALHEIM O M, CHRISTY A A, TELNÆS N et al. Maturity determination of organic matter in coals using the methylphenanthrene distribution[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1883-1888. doi: 10.1016/0016-7037(87)90179-7 [29] FARRIMOND P, TAYLOR A, TELNÆS N. Biomarker maturity parameters: the role of generation and thermal degradation[J]. Organic Geochemistry, 1998, 29(5/7): 1181-1197. [30] ZHU Chuanzhen, GANG Wenzhe, ZHAO Xianzheng, et al. Reconstruction of oil charging history in the multi-source petroleum system of the Beidagang buried-hill structural belt in the Qikou Sag, Bohai Bay Basin, China: based on the integrated analysis of oil-source rock correlations, fluid inclusions and geologic data[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109197. doi: 10.1016/j.petrol.2021.109197 [31] 冯梅. 聚类分析在公务员招聘中的应用及SPSS实现[J]. 数学的实践与认识, 2006, 36(10): 46-52.FENG Mei. The application of cluster analysis in civil servants' enrollment and solution by SPSS[J]. Mathematics in Practice and Theory, 2006, 36(10): 46-52. [32] 毛毳, 邹文斌, 孙世轩, 等. 主成分分析法在煤储层评价中的应用: 以鹤岗煤矿为例[J]. 中国煤炭地质, 2016, 28(11): 15-18.MAO Cui, ZOU Wenbin, SUN Shixuan, et al. Application of principal component analysis in coal reservoir assessment: a case study of Hegang Coalfield[J]. Coal Geology of China, 2016, 28(11): 15-18. [33] 潘荣, 朱筱敏, 张剑锋, 等. 基于主成分分析的储层质量综合评价模型: 以克拉苏构造带巴什基奇克组为例[J]. 石油实验地质, 2014, 36(3): 376-380.PAN Rong, ZHU Xiaomin, ZHANG Jianfeng, et al. A model for comprehensive evaluation of reservoir quality based on principal component analysis: a case study of Bashijiqike Formation in Kelasu tectonic zone[J]. Petroleum Geology & Experiment, 2014, 36(3): 376-380. [34] ZHENG Dongyu, WU Sixuan. Principal component analysis of textural characteristics of fluvio-lacustrine sandstones and controlling factors of sandstone textures[J]. Geological Magazine, 2021, 158(10): 1847-1861. doi: 10.1017/S0016756821000418 [35] HUANG Bin, XU Rui, FU Cheng, et al. Thief zone assessment in sandstone reservoirs based on multi-layer weighted principal component analysis[J]. Energies, 2018, 11(5): 1274. doi: 10.3390/en11051274 [36] PRUNSA J K, RAPP C, HINTZE U, et al. Characterization of paraffin oils and petrolatum using LDI-TOF MS and principle component analysis[J]. European Journal of Lipid Science and Technology, 2003, 105(6): 275-280. doi: 10.1002/ejlt.200390056 [37] 王遥平. 基于化学计量学的油气源对比与实例研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019.WANG Yaoping. Oil- and gas-source rock correlations and case studies based on chemometrics[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2019. [38] 施龙青, 王晓丽, 邱梅, 等. 利用微量元素Fisher法识别灰岩突水水源[J]. 中国科技论文, 2020, 15(5): 491-496.SHI Longqing, WANG Xiaoli, QIU Mei, et al. Recognition of limestone water inrush source by Fisher method of trace elements[J]. China Sciencepaper, 2020, 15(5): 491-496. [39] 王伟, 康胜松, 高峰, 等. 基于模糊C均值聚类与Bayes判别的致密油储层分类评价[J]. 特种油气藏, 2020, 27(5): 118-124.WANG Wei, KANG Shengsong, GAO Feng, et al. Classification and evaluation of tight oil reservoirs based on fuzzy C-Means clustering and Bayes discrimination[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 118-124. [40] 周姗姗, 李友川, 杨树春, 等. 判别分析油源对比方法及应用: 以渤海湾盆地渤中凹陷为例[J]. 中国海上油气, 2023, 35(5): 35-46.ZHOU Shanshan, LI Youchuan, YANG Shuchun, et al. Discriminant analysis-based oil-source correlation method and application: a case study of Bozhong Depression in Bohai Bay Basin[J]. China Offshore Oil and Gas, 2023, 35(5): 35-46. -