Research status of self-sealing mechanisms of caprocks and fractures during CO2 geological storage
-
摘要: 通过对现有文献的系统调研,总结了CO2地质封存过程中物质重新平衡对盖层和裂缝自封闭规律的动态影响研究现状。室内实验、井场监测和数值模拟研究普遍显示,CO2注入后在短期内不会突破较厚的盖层,即使突破直接上覆盖层,也会被多层盖层系统二次捕获封存。盖层自封闭的机制主要包括超临界相态CO2注入限域空间导致的自封闭、岩石孔隙结构压缩,或微粒运移导致的机械作用自封闭和化学作用引起的自封闭。而裂缝或断层系统在CO2注入后的流体—岩石相互作用机制下,会随着时间推移倾向于逐渐形成自封闭,低CO2流速、小裂缝开度是形成裂缝/断层自封闭的主要因素。但在时间尺度的效应下,CO2的物理扩散、化学反应对盖层和裂缝的动态定量影响,仍然需要进一步详细研究。目前国内外对这一动态过程的研究正逐渐向多时空尺度协同、多研究手段结合、多因素耦合的系统过程发展,并且逐渐成为CO2地质封存研究的热点问题。
-
关键词:
- CO2地质封存 /
- 盖层 /
- 裂缝 /
- 自封闭机制 /
- 二氧化碳捕集利用和封存
Abstract: Through a systematic review of the existing literature, the current research on the dynamic effects of material re-equilibration on caprock and fracture self-sealing patterns during CO2 geological storage is summarized. Laboratory experiments, field monitoring at well sites, and numerical simulation studies generally show that CO2 injection will not breach relatively thick caprocks in the short term, and even if the directly overlying caprock is breached, CO2 will be secondarily trapped and sealed by multi-layered caprock systems. The mechanisms of caprock self-sealing mainly include self-sealing due to injection of supercritical-phase CO2 into confined spaces, mechanical self-sealing resulting from rock pore structure compression or particle migration, and self-sealing induced by chemical reactions. Under the fluid and rock interaction mechanisms after CO2 injection, fractured or faulted systems tend to progressively develop self-sealing over time. Low CO2 flow rates and small fracture apertures are identified as the main factors in the formation of fracture/ fault self-sealing. However, the dynamic quantitative effects of CO2 physical diffusion and chemical reactions on caprocks and fractures under time-scale effects still require further detailed investigation. Currently, research on this dynamic process at home and abroad is gradually evolving toward a systematic approach that integrates multi-spatiotemporal scale coordination, multiple research methods, and multi-factor coupling, and it is increasingly becoming a hot topic in research on CO2 geological storage. -
图 1 美国犹他州格林河地区南部CO2注入封存监测示意图
CO2饱和盐水(阴影)沿着含水层底部从断层带迁移(波浪线方向),多层储盖层组合对CO2的封盖作用监测(据KAMPMAN等[39]修改)。
Figure 1. Schematic diagram of CO2 injection and storage monitoring in southern Green River area, Utah, USA
图 2 初始流体通道直径和流体停留时间(流体流量除以流速)的实验和数值模拟结果
正方形实验数据据文献[55];A-2013据文献[62];A-2016据文献[63];C-2015据文献[57];H-2016据文献[64];L-2013据文献[65];M-2013据文献[66];W-2016据文献[67];W-2019据文献[68]。CF.恒定流速实验条件;CP.恒定压力实验条件;I.间歇流动实验条件;LS.实验结果有限封闭;NS.实验结果未封闭;S.实验结果封闭。裂缝关闭的实验结果用实心符号表示;实验渗透率降低或裂缝被充填但仍处于开启状态的结果用符号中填充×表示;渗透率无变化或渗透率增加的实验结果用空心符号表示。数值模拟结果B-2016据文献[56]、C-2015据文献[57和I-2017据文献[59](A表示无围压;B表示围压)以实线显示,虚线是对原始建模区域的外推(据文献[55]修改)。
Figure 2. Experimental and numerical simulation results of initial fluid channel diameter and fluid residence time (fluid flow volume divided by flow velocity)
图 3 CO2注入产生的物理化学变化对储层和盖层的影响
A1至A4表示在储层岩石中形成的区域,A1或近井筒区域完全被干燥的超临界CO2占据,A2是含水的CO2区域,A3是两相流区,A4是含CO2的盐水区域,A5是远场或未侵入区;盖层分为3个区:C1为干CO2区域,C2为含水的CO2区域,C3为含CO2的盐水区(据文献[69]修改)。
Figure 3. Effect of physicochemical changes induced by CO2 injection on reservoirs and caprocks
-
[1] CELIA M A, BACHU S, NORDBOTTEN J M, et al. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations[J]. Water Resources Research, 2015, 51(9): 6846-6892. doi: 10.1002/2015WR017609 [2] BLACKFORD J, STAHL H, BULL J M, et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage[J]. Nature Climate Change, 2014, 4(11): 1011-1016. doi: 10.1038/nclimate2381 [3] MONASTERSKY R. Seabed scars raise questions over carbon-storage plan[J]. Nature, 2013, 504(7480): 339-340. doi: 10.1038/504339a [4] DELKHAHI B, NASSERY H R, VILARRASA V, et al. Impacts of natural CO2 leakage on groundwater chemistry of aquifers from the Hamadan Province, Iran[J]. International Journal of Greenhouse Gas Control, 2020, 96: 103001. doi: 10.1016/j.ijggc.2020.103001 [5] OLDENBURG C M. Screening and ranking framework for geologic CO2 storage site selection on the basis of health, safety, and environmental risk[J]. Environmental Geology, 2008, 54(8): 1687-1694. doi: 10.1007/s00254-007-0947-8 [6] ZHAO Xiaohong, DENG Hongzhang, WANG Wenke, et al. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet Plateau[J]. Scientific Reports, 2017, 7(1): 3001. doi: 10.1038/s41598-017-02500-x [7] FARRAR C D, SOREY M L, EVANS W C, et al. Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest[J]. Nature, 1995, 376(6542): 675-678. doi: 10.1038/376675a0 [8] HILL P M. Possible asphyxiation from carbon dioxide of a cross-country skier in eastern California: a deadly volcanic hazard[J]. Wilderness & Environmental Medicine, 2000, 11(3): 192-195. [9] IEA GHG. CCS site characterisation criteria[R]. Cheltenham: IEA Greenhouse Gas R&D Programme, 2009. [10] CASSEM. CO2 aquifer storage site evaluation and monitoring[R]. Edinburgh: Heriot-Watt University, 2011. [11] DELPRAT-JANNAUD F, KORRE A, SHI J Q, et al. State-of-the-art review of CO2 storage site selection and characterization methods[R]. CGS Europe, 2013. [12] CHADWICK A, ARTS R, BERNSTONE C, et al. Best practice for the storage of CO2 in saline aquifers-observations and guidelines from the SACS and CO2STORE projects[R]. Hawthornes: British Geological Survey, 2008. [13] NETL. Site screening, selection, and initial characterisation for storage of CO2 in deep geologic formations (No. DOE/NETL-401/090808)[R]. National Energy Technology Laboratory, 2010. [14] METZ B, DAVIDSON O, DE CONINCK H, et al. Carbon dioxide capture and storage[R]. Cambridge: Cambridge University Press, 2005. [15] NORDBOTTEN J M, KAVETSKI D, CELIA M A, et al. Model for CO2 leakage including multiple geological layers and multiple leaky wells[J]. Environmental Science & Technology, 2009, 43(3): 743-749. [16] NEUFELD J A, VELLA D, HUPPERT H E, et al. Leakage from gravity currents in a porous medium. Part 1. A localized sink[J]. Journal of Fluid Mechanics, 2011, 666: 391-413. doi: 10.1017/S002211201000488X [17] HOU Zhangshuan, ROCKHOLD M L, MURRAY C J. Evaluating the impact of caprock and reservoir properties on potential risk of CO2 leakage after injection[J]. Environmental Earth Sciences, 2012, 66(8): 2403-2415. doi: 10.1007/s12665-011-1465-2 [18] ZEIDOUNI M. Analytical model of well leakage pressure perturbations in a closed aquifer system[J]. Advances in Water Resources, 2014, 69: 13-22. doi: 10.1016/j.advwatres.2014.03.004 [19] DIAO Yujie, ZHANG Senqi, WANG Yongsheng, et al. Short-term safety risk assessment of CO2 geological storage projects in deep saline aquifers using the Shenhua CCS Demonstration Project as a case study[J]. Environmental Earth Sciences, 2015, 73(11): 7571-7586. doi: 10.1007/s12665-014-3928-8 [20] WOODS A W, HESSE M, BERKOWITZ R, et al. Multiple steady states in exchange flows across faults and the dissolution of CO2[J]. Journal of Fluid Mechanics, 2015, 769: 229-241. doi: 10.1017/jfm.2015.100 [21] SHAKIBA M, HOSSEINI S A. Detection and characterization of CO2 leakage by multi-well pulse testing and diffusivity tomography maps[J]. International Journal of Greenhouse Gas Control, 2016, 54: 15-28. doi: 10.1016/j.ijggc.2016.08.015 [22] DEJAM M, HASSANZADEH H. Diffusive leakage of brine from aquifers during CO2 geological storage[J]. Advances in Water Resources, 2018, 111: 36-57. doi: 10.1016/j.advwatres.2017.10.029 [23] BERNE P, BACHAUD P, FLEURY M. Diffusion properties of carbonated caprocks from the Paris Basin[J]. Oil & Gas Science and Technology, 2010, 65(3): 473-484. [24] GAUS I, AZAROUAL M, CZERNICHOWSKI-LAURIOL I. Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea)[J]. Chemical Geology, 2005, 217(3/4): 319-337. [25] GHERARDI F, XU T F, PRUESS K. Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir[J]. Chemical Geology, 2007, 244(1/2): 103-129. [26] YOKSOULIAN L E, FREIBURG J T, BUTLER S K, et al. Mineralogical alterations during laboratory-scale carbon sequestration experiments for the Illinois Basin[J]. Energy Procedia, 2013, 37: 5601-5611. doi: 10.1016/j.egypro.2013.06.482 [27] KAMPMAN N, BICKLE M, WIGLEY M, et al. Fluid flow and CO2-fluid-mineral interactions during CO2-storage in sedimentary basins[J]. Chemical Geology, 2014, 369: 22-50. doi: 10.1016/j.chemgeo.2013.11.012 [28] FINKBEINER T, ZOBACK M, FLEMINGS P, et al. Stress, pore pressure, and dynamically constrained hydrocarbon columns in the South Eugene Island 330 field, northern Gulf of Mexico[J]. AAPG Bulletin, 2001, 85(6): 1007-1031. [29] MCDERMOTT C I, EDLMANN K, HASZELDINE R S. Predicting hydraulic tensile fracture spacing in strata-bound systems[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 63: 39-49. doi: 10.1016/j.ijrmms.2013.06.004 [30] RUTQVIST J, TSANG C F. A study of caprock hydromechanical changes associated with CO2-injection into a brine formation[J]. Environmental Geology, 2002, 42(2): 296-305. [31] CHIARAMONTE L, ZOBACK M D, FRIEDMANN J, et al. Seal integrity and feasibility of CO2 sequestration in the Teapot Dome EOR pilot: geomechanical site characterization[J]. Environmental Geology, 2008, 54(8): 1667-1675. doi: 10.1007/s00254-007-0948-7 [32] RINALDI A P, RUTQVIST J. Modeling of deep fracture zone opening and transient ground surface uplift at KB-502 CO2 injection well, In Salah, Algeria[J]. International Journal of Greenhouse Gas Control, 2013, 12: 155-167. doi: 10.1016/j.ijggc.2012.10.017 [33] VAN NOORT R, WOLTERBEEK T K T, DRURY M R, et al. The force of crystallization and fracture propagation during in-situ carbonation of peridotite[J]. Minerals, 2017, 7(10): 190. doi: 10.3390/min7100190 [34] IYER K, JAMTVEIT B, MATHIESEN J, et al. Reaction-assisted hierarchical fracturing during serpentinization[J]. Earth and Planetary Science Letters, 2008, 267(3/4): 503-516. [35] JAMTVEIT B, PUTNIS C V, MALTHE-SØRENSSEN A. Reaction induced fracturing during replacement processes[J]. Contributions To Mineralogy and Petrology, 2009, 157(1): 127-133. doi: 10.1007/s00410-008-0324-y [36] GRATIER J P, FRERY E, DESCHAMPS P, et al. How travertine veins grow from top to bottom and lift the rocks above them: the effect of crystallization force[J]. Geology, 2012, 40(11): 1015-1018. doi: 10.1130/G33286.1 [37] PLVMPER O, RØYNE A, MAGRASÓ A, et al. The interface-scale mechanism of reaction-induced fracturing during serpentinization[J]. Geology, 2012, 40(12): 1103-1106. doi: 10.1130/G33390.1 [38] CAVANAGH A J, HASZELDINE R S. The Sleipner storage site: capillary flow modeling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation[J]. International Journal of Greenhouse Gas Control, 2014, 21: 101-112. doi: 10.1016/j.ijggc.2013.11.017 [39] KAMPMAN N, BUSCH A, BERTIER P, et al. Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks[J]. Nature Communication, 2016, 7(1): 12268. doi: 10.1038/ncomms12268 [40] ROHMER J, PLUYMAKERS A, RENARD F. Mechano-chemical interactions in sedimentary rocks in the context of CO2 storage: weak acid, weak effects?[J]. Earth-Science Reviews, 2016, 157: 86-110. doi: 10.1016/j.earscirev.2016.03.009 [41] ESPINOZA D N, SANTAMARINA J C. CO2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage[J]. International Journal of Greenhouse Gas Control, 2017, 66: 218-229. doi: 10.1016/j.ijggc.2017.09.019 [42] HOU Lianhua, YU Zhichao, LUO Xia, et al. self-sealing of caprocks during CO2 geological sequestration[J]. Energy, 2022, 252: 124064. doi: 10.1016/j.energy.2022.124064 [43] MIOCIC J M, GILFILLAN S M V, ROBERTS J J, et al. Controls on CO2 storage security in natural reservoirs and implications for CO2 storage site selection[J]. International Journal of Greenhouse Gas Control, 2016, 51: 118-125. doi: 10.1016/j.ijggc.2016.05.019 [44] YASUHARA H, KINOSHITA N, NAKASHIMA S, et al. Evolution of mechanical and hydraulic properties in sandstone induced by mineral trapping[C]//Proceedings of the 48th U.S. Rock Mechanics/Geomechanics Symposium. Minneapolis: ARMA, 2014. [45] EDLMANN K, HASZELDINE S, MCDERMOTT C I. Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow[J]. Environmental Earth Sciences, 2013, 70(7): 3393-3409. doi: 10.1007/s12665-013-2407-y [46] ELKHOURY J E, DETWILER R L, AMELI P. Can a fractured caprock self-heal?[J]. Earth and Planetary Science Letters, 2015, 417: 99-106. doi: 10.1016/j.epsl.2015.02.010 [47] HANGX S J T, PLUYMAKERS A M H, TEN HOVE A, et al. The effects of lateral variations in rock composition and texture on anhydrite caprock integrity of CO2 storage systems[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 69: 80-92. doi: 10.1016/j.ijrmms.2014.03.001 [48] BUSCH A, ALLES S, GENSTERBLUM Y, et al. Carbon dioxide storage potential of shales[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 297-308. doi: 10.1016/j.ijggc.2008.03.003 [49] KIVI I R, MAKHNENKO R Y, VILARRASA V. Two-phase flow mechanisms controlling CO2 intrusion into Shaly caprock[J]. Transport in Porous Media, 2022, 141(3): 771-798. doi: 10.1007/s11242-022-01748-w [50] MARBLER H, ERICKSON K P, SCHMIDT M, et al. Geomechanical and geochemical effects on sandstones caused by the reaction with supercritical CO2: an experimental approach to in situ conditions in deep geological reservoirs[J]. Environmental Earth Sciences, 2013, 69(6): 1981-1998. doi: 10.1007/s12665-012-2033-0 [51] NILSEN H M, LIE K A, ANDERSEN O. Analysis of CO2 trapping capacities and long-term migration for geological formations in the Norwegian North Sea using MRST-CO2Lab[J]. Computers & Geosciences, 2015, 79: 15-26. [52] AKHBARI D, HESSE M A. Causes of underpressure in natural CO2 reservoirs and implications for geological storage[J]. Geology, 2017, 45(1): 47-50. doi: 10.1130/G38362.1 [53] BASTIAENS W, BERNIER F, LI X L. SELFRAC: Experiments and conclusions on fracturing, self-healing and self-sealing processes in clays[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8/14): 600-615. [54] BOCK H, DEHANDSCHUTTER B, MARTIN C D, et al. Self-sealing of fractures in argillaceous formations in the context of geological disposal of radioactive waste[R]. OECD, 2010. [55] NGUYEN P, GUTHRIE JR G D, CAREY J W. Experimental validation of self-sealing in wellbore cement fractures exposed to high-pressure, CO2-saturated solutions[J]. International Journal of Greenhouse Gas Control, 2020, 100: 103112. doi: 10.1016/j.ijggc.2020.103112 [56] BRUNET J P L, LI Li, KARPYN Z T, et al. Fracture opening or self-sealing: critical residence time as a unifying parameter for cement-CO2-brine interactions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 25-37. doi: 10.1016/j.ijggc.2016.01.024 [57] CAO Peilin, KARPYN Z T, LI Li. Self-healing of cement fractures under dynamic flow of CO2-rich brine[J]. Water Resources Research, 2015, 51(6): 4684-4701. doi: 10.1002/2014WR016162 [58] GUTHRIE G D JR, PAWAR R J, CAREY J W, et al. The mechanisms, dynamics, and implications of self-sealing and CO2 resis-tance in wellbore cements[J]. International Journal of Greenhouse Gas Control, 2018, 75: 162-179. doi: 10.1016/j.ijggc.2018.04.006 [59] IYER J, WALSH S D C, HAO Yue, et al. Incorporating reaction-rate dependence in reaction-front models of wellbore-cement/carbonated-brine systems[J]. International Journal of Greenhouse Gas Control, 2017, 59: 160-171. doi: 10.1016/j.ijggc.2017.01.019 [60] LIU Quanyou, ZHU Dongya, JIN Zhijun, et al. Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs[J]. Renewable and Sustainable Energy Reviews, 2023, 171: 113000. doi: 10.1016/j.rser.2022.113000 [61] OKUYAMA Y, FUNATSU T, FUJⅡ T, et al. Dawsonite and other carbonate veins in the Cretaceous Izumi Group, SW Japan: a natural support for fracture self-sealing in mudstone caprock in CGS?[J]. Procedia Earth and Planetary Science, 2013, 7: 636-639. doi: 10.1016/j.proeps.2013.03.060 [62] ABDOULGHAFOUR H, LUQUOT L, GOUZE P. Characterization of the mechanisms controlling the permeability changes of fractured cements flowed through by CO2-rich brine[J]. Environmental Science & Technology, 2013, 47(18): 10332-10338. [63] ABDOULGHAFOUR H, GOUZE P, LUQUOT L, et al. Characterization and modeling of the alteration of fractured class-G Portland cement during flow of CO2-rich brine[J]. International Journal of Greenhouse Gas Control, 2016, 48: 155-170. doi: 10.1016/j.ijggc.2016.01.032 [64] HUERTA N J, HESSE M A, BRYANT S L, et al. Reactive transport of CO2K_saturated water in a cement fracture: application to wellbore leakage during geologic CO2 storage[J]. International Journal of Greenhouse Gas Control, 2016, 44: 276-289. doi: 10.1016/j.ijggc.2015.02.006 [65] LUQUOT L, ABDOULGHAFOUR H, GOUZE P. Hydro-dynamically controlled alteration of fractured Portland cements flowed by CO2-rich brine[J]. International Journal of Greenhouse Gas Control, 2013, 16: 167-179. doi: 10.1016/j.ijggc.2013.04.002 [66] WALSH S D, DU FRANE W L, Mason H E, et al. Permeability of wellbore-cement fractures following degradation by carbonated brine[J]. Rock Mechanics and Rock Engineering, 2013, 46: 455-464. doi: 10.1007/s00603-012-0336-9 [67] WOLTERBEEK T K T, PEACH C J, RAOOF A, et al. Reactive transport of CO2-rich fluids in simulated wellbore interfaces: flow-through experiments on the 1-6 m length scale[J]. International Journal of Greenhouse Gas Control, 2016, 54: 96-116. doi: 10.1016/j.ijggc.2016.08.034 [68] WOLTERBEEK T K T, RUCKERT F, VAN MOORSEL S G, et al. Reactive transport and permeability evolution in wellbore defects exposed to periodic pulses of CO2-rich water[J]. International Journal of Greenhouse Gas Control, 2019, 91: 102835. doi: 10.1016/j.ijggc.2019.102835 [69] VAFAIE A, CAMA J, SOLER J M, et al. Chemo-hydro-mechanical effects of CO2 injection on reservoir and seal rocks: a review on laboratory experiments[J]. Renewable and Sustainable Energy Reviews, 2023, 178: 113270. doi: 10.1016/j.rser.2023.113270 [70] 隆辉, 曾溅辉, 刘亚洲, 等. 可视化三维物理模拟实验技术在油气成藏研究中的应用: 以塔里木盆地顺北地区S53-2井为例[J]. 石油实验地质, 2024, 46(5): 1110-1122. doi: 10.11781/sysydz2024051110 LONG Hui, ZENG Jianhui, LIU Yazhou, et al. Application of visual 3D physical simulation experiment technology in oil and gas accumulation research: a case study of well S53-2 in Shunbei area of Tarim Basin[J]. Petroleum Geology & Experiment, 2024, 46(5): 1110-1122. doi: 10.11781/sysydz2024051110 [71] NEWELL P, ILGEN A G. Overview of geological carbon storage (GCS)[M]//NEWELL P, ILGEN A G. Science of Carbon Storage in Deep Saline Formations. Amsterdam: Elsevier, 2019. -