Evaluation of fault lateral sealing for CO2 storage in offshore saline aquifers: a case study of Enping A Oilfield in Enping Sag, Pearl River Mouth Basin
-
摘要: 碳捕集、利用与封存(CCUS)技术作为应对全球气候变化的关键手段,在实现“双碳”目标中具有重要战略地位。其中,CO2在咸水层中封存是碳封存的主要方式,而断层圈闭封闭性是CO2地质封存的重要场地筛选标准,其侧向封闭性的准确评价是决定CO2封存安全性的关键问题。目前,断层侧向封闭性评价方法主要针对常规油气藏进行定性和定量评价,而针对咸水层CO2封存的系统性评价方法和体系仍较匮乏。针对海上咸水层CO2封存安全性评价的关键难题,以珠江口盆地珠三坳陷恩平凹陷恩平A油田为例,开展关键断层内部矿物分布与胶结性的非均质性研究。基于断层泥比率(SGR)、过断层压力差(AFPD)及封闭气柱高度,建立了一套CO2断层侧向封闭性评价方法,评价断层对CO2的封闭性能,确定CO2封存目标层位。研究结果表明,F1、F3断层在粤海320和韩江420层位具有静态封闭能力,CO2最大羽流柱高度分别为50~400 m、175~300 m。两套地层对CO2具有良好的密闭性和储存性,可作为恩平A油田CO2封存目标层位。通过该研究结果建立断层空间封闭性评价技术,根据不同层位断距—距离曲线及单井泥质含量信息,得到相应层位断面属性及断层封闭性三角图,实现断层区域封闭性定量评价,为未来CO2咸水层封存提供了定量化筛选评价依据。Abstract: Carbon capture, utilization, and storage (CCUS) has been considered a key strategy in addressing global climate change and holds strategic importance in achieving the "dual carbon" goals. Among various approaches, CO2 storage in saline aquifers has been identified as the primary method of carbon sequestration. The sealing capacity of a fault seal is regarded as a crucial criterion for site selection in CO2 geological storage, and the accurate evaluation of fault lateral sealing is considered critical for ensuring storage security. At present, most evaluation methods for lateral sealing focus on qualitative and quantitative assessments of conventional hydrocarbon reservoirs, while systematic methods and frameworks for CO2 storage in saline aquifers remain limited. To address the key challenge of evaluating CO2 storage security in offshore saline aquifers, the Enping A Oilfield in the Enping Sag of the Zhu Ⅲ Depression, Pearl River Mouth Basin, was selected as a case study. The heterogeneity of mineral distribution and cementation within key faults was investigated. Based on parameters including Shale Gouge Ratio (SGR), Across-Fault Pressure Difference (AFPD), and sealed gas column height, a method was developed for evaluating fault lateral sealing capacity for CO2 storage, enabling assessments of sealing performance and identification of target layers for CO2 storage. The results showed that the F1 and F3 faults possess static sealing capacity at the Yuehai 320 and Hanjiang 420 layers. The maximum CO2 plume column heights are estimated to be 50 to 400 m and 175 to 300 m, respectively. Both formations exhibit favorable sealing and storage properties for CO2 and can be consi-dered as target layers for CO2 storage in the Enping A Oilfield. Based on the findings, a spatial sealing evaluation technique for faults was developed. By integrating fault throw-distance curves and single-well clay content data for different layers, fault surface attributes and fault sealing ternary diagrams were generated, enabling quantitative evaluation of fault zone sealing. The study provides a basis for the quantitative screening and assessment of saline aquifers for future CO2 storage.
-
表 1 珠江口盆地恩平凹陷恩平A油田F1和F3断层详细信息
Table 1. Detailed information of F1 and F3 faults in Enping A Oilfield, Enping Sag, Pearl River Mouth Basin
序号 断层序号 深度/m 层位 圈闭类型 控圈断距/m 1 F1 780~910 粤海320 上升盘圈闭 50~100 2 F1 1 105~1 220 韩江420 上升盘圈闭 50~145 3 F1 1 410~1 474 韩江640 上升盘圈闭 60~150 4 F1 1 500~1 731 珠江220 上升盘圈闭 75~185 5 F3 780~910 粤海320 上升盘圈闭 0~35 6 F3 1 105~1 220 韩江420 上升盘圈闭 0~50 -
[1] PALES A F, BOUCKAERT S, MOARIF S. Net zero by 2050: a roadmap for the global energy sector—A special report by the International Energy Agency[R]. 2021. [2] 孙腾民, 刘世奇, 汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术, 2021, 49(11): 10-20.SUN Tengmin, LIU Shiqi, WANG Tao. Research advances on evaluation of CO2 geological storage potential in China[J]. Coal Science and Technology, 2021, 49(11): 10-20. [3] CAI Bofeng, LI Qi, ZHANG Xian. China CO2 capture, utilization and storage (CCUS) annual report (2021)—CCUS path study in China[J]. Wuhan: Institute of Environmental Planning, Ministry of Ecology and Environment, Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, China, 2021. [4] 吕晓聪, 刘慧卿, 王敬, 等. 杂质气体对二氧化碳在废弃气藏咸水层埋存的影响[J]. 油气地质与采收率, 2023, 30(2): 153-161.LÜ Xiaocong, LIU Huiqing, WANG Jing, et al. Effect of impurities on CO2 sequestration in saline aquifers in abandoned gas reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 153-161. [5] LI Yang, WANG Rui, ZHAO Qingmin, et al. CO2-enhanced oil recovery with CO2 utilization and storage: progress and practical applications in China[J]. Unconventional Resources 2024, 4, 100096. doi: 10.1016/j.uncres.2024.100096 [6] 张凯, 陈掌星, 兰海帆, 等. 碳捕集、利用与封存技术的现状及前景[J]. 特种油气藏, 2023, 30(2): 1-9.ZHANG Kai, CHEN Zhangxing, Lan Haifan, et al. Status and prospects of carbon capture, utilization and storage technology[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 1-9. [7] HAN Sijie, SANG Shuxun, ZHANG Jinchao. Assessment of CO2 geological storage capacity based on adsorption isothermal experiments at various temperatures: a case study of No. 3 coal in the Qinshui Basin[J]. Petrolum, 2023, 9(2): 274-274. doi: 10.1016/j.petlm.2022.04.001 [8] ZAPPONE A, RINALDI A P, GRAB M, et al. Fault sealing and caprock integrity for CO2 storage: an in situ injection experiment[J]. Solid Earth, 2021, 12(2): 319-343. doi: 10.5194/se-12-319-2021 [9] STRAND J, LANGHI L, ROSS A S, et al. Coupled stratigraphic and fault seal modelling used to describe trap integrity in the frontier Bight Basin, Australia[J]. Marine and Petroleum Geology, 2017, 86: 474-485. doi: 10.1016/j.marpetgeo.2017.06.011 [10] 吴碧波, 邹明生, 陆江, 等. 涠西南凹陷TY油田断层封闭性定量评价[J]. 西南石油大学学报(自然科学版), 2019, 41(4): 74-80.WU Bibo, ZOU Mingsheng, LU Jiang, et al. A quantitative evaluation of fault sealing of the TY oilfield in the Weixinan Sag[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(4): 74-80. [11] 孙同文, 高喜成, 吕延防, 等. 断裂转换带作为油气侧向、垂向运移通道的研究进展[J]. 石油与天然气地质, 2019, 40(5): 1011-1021.SUN Tongwen, GAO Xicheng, LV Yanfang, et al. Research progress in fault transformation zones as lateral or vertical hydrocarbon migration pathways[J]. Oil & Gas Geology, 2019, 40(5): 1011-1021. [12] 邵雨, 汪仁富, 张越迁, 等. 准噶尔盆地西北缘走滑构造与油气勘探[J]. 石油学报, 2011, 32(6): 976-984.SHAO Yu, WANG Renfu, ZHANG Yueqian, et al. Strike-slip structures and oil-gas exploration in the NW margin of the Junggar Basin, China[J]. Acta Petrolei Sinica, 2011, 32(6): 976-984. [13] KING HUBBERT M, RUBEY W W. Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting[J]. GSA Bulletin, 1959, 70(2): 115-166. doi: 10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2 [14] SMITH D A. Theoretical considerations of sealing and non-sealing faults[J]. AAPG Bulletin, 1966, 50(2): 363-374. [15] GALEEV D, DADALKO R, POTAPOV A. Criteria and techniques of waterflooding adjustment for brownfield[C]//SPE Russian Oil and Gas Exploration & Production Technical Conference and Exhibition. Moscow: SPE, 2014: SPE-171150-MS. [16] 董大伟, 李理, 刘建, 等. 准噶尔西缘车排子凸起东北部断层封闭性[J]. 石油与天然气地质, 2014, 35(5): 639-645.DONG Dawei, LI Li, LIU Jian, et al. Sealing ability of faults in northeastern Chepaizi Uplift at western margin of Junggar Basin[J]. Oil & Gas Geology, 2014, 35(5): 639-645. [17] 胡望水, 吕炳全, 郭齐军, 等. 大港油田大张坨断层三维封闭特征[J]. 石油勘探与开发, 2002, 29(5): 31-33.HU Wangshui, LV Bingquan, GUO Qijun, et al. 3-D sealing properties of Dazhangtuo Fault in Dagang Oil Field[J]. Petroleum Exploration and Development, 2002, 29(5): 31-33. [18] 刘永茜, 韩鑫涛. 断层对煤层瓦斯封闭性定量方法研究[J]. 煤炭科学技术, 2023, 51(2): 193-203.LIU Yongqian, HAN Xintao. Research on the quantitative method of fault sealing to coal seam gas[J]. Coal Science and Technology, 2023, 51(2): 193-203. [19] 张培森, 许大强, 付翔, 等. 基于断层封闭性研究评价其导水性[J]. 采矿与岩层控制工程学报, 2022, 4(2): 023033.ZHANG Peisen, XU Daqiang, FU Xiang, et al. Evaluation of hydraulic conductivity based on fault confinement studies[J]. Journal of Mining and Strata Control Engineering, 2022, 4(2): 023033. [20] 赵永祺, 王华崇, 贾玉梅. 复杂断块油藏断层封闭性研究[J]. 断块油气田, 1996, 3(1): 21-25.ZHAO Yongqi, WANG Huachong, JIA Yumei. A study on fault sealing of complex fault block reservoir[J]. Fault-Block Oil & Gas Field, 1996, 3(1): 21-25. [21] 张立宽, 罗晓容, 廖前进, 等. 断层连通概率法定量评价断层的启闭性[J]. 石油与天然气地质, 2007, 28(2): 181-190.ZHANG Likuan, LUO Xiaorong, LIAO Qianjin, et al. Quantitative evaluation of fault sealing property with fault connectivity probabilistic method[J]. Oil & Gas Geology, 2007, 28(2): 181-190. [22] ALLAN U S. Model for hydrocarbon migration and entrapment within faulted structures[J]. AAPG bulletin, 1989, 73(7): 803-811. [23] 曹龙, 王少鹏, 高鹏字, 等. 黄河口凹陷新近系岩性—构造油藏断层封闭性评价[J]. 断块油气田, 2022, 29(4): 502-507.CAO Long, WANG Shaopeng, GAO Pengyu, et al. Fault sealing of Neogene lithology-structural reservoirs in the Huanghekou Sag[J]. Fault-Block Oil & Gas Field, 2022, 29(4): 502-507. [24] 付广, 史集建, 吕延防. 断层岩古排替压力恢复及其封闭性能研究[J]. 中国矿业大学学报, 2013, 42(6): 996-1001.FU Guang, SHI Jijian, LV Yanfang. Study of ancient displacement pressure of fault rock recovery and its sealing characteristics[J]. Journal of China University of Mining & Technology, 2013, 42(6): 996-1001. [25] 吕延防, 王伟, 胡欣蕾, 等. 断层侧向封闭性定量评价方法[J]. 石油勘探与开发, 2016, 43(2): 310-316.LV Yanfang, WANG Wei, HU Xinlei, et al. Quantitative evaluation method of fault lateral sealing[J]. Petroleum Exploration and Development, 2016, 43(2): 310-316. [26] YIELDING G, FREEMAN B, NEEDHAM D T. Quantitative fault seal prediction[J]. AAPG Bulletin, 1997, 81(6): 897-917. [27] 李储华, 于雯泉, 丁建荣. 加权断层泥比率法(WSGR)定量判别断层封闭性: 以苏北盆地高邮凹陷永安地区为例[J]. 石油实验地质, 2024, 46(1): 158-165.LI Chuhua, YU Wenquan, DING Jianrong. Quantitative evaluation of fault sealing by Weighted Shale Gouge Ratio(WSGR): a case study of Yongan area in Gaoyou Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2024, 46(1): 158-165. [28] SONG Xianqiang, MENG Lingdong, FU Xiaofei, et al. Sealing capacity evolution of trap-bounding faults in sand-clay sequences: insights from present and paleo-oil entrapment in fault-bounded traps in the Qinan area, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2020, 122: 104680. doi: 10.1016/j.marpetgeo.2020.104680 [29] 齐东岩, 吕金龙, 杨桂南. 松辽盆地敖南油田CO2驱油藏断层封闭性定量评价[J]. 大庆石油地质与开发, 2024, 43(6): 114-119.QI Dongyan, LV Jinlong, YANG Guinan. Quantitative evaluation of fault sealing of CO2 drive reservoirs in Aonan oilfield of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(6): 114-119. [30] 付晓飞, 贾茹, 王海学, 等. 断层—盖层封闭性定量评价: 以塔里木盆地库车坳陷大北—克拉苏构造带为例[J]. 石油勘探与开发, 2015, 42(3): 300-309.FU Xiaofei, JIA Ru, WANG Haixue, et al. Quantitative evaluation of fault-caprock sealing capacity: a case from Dabei-Kelasu structural belt in Kuqa Depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(3): 300-309. [31] GIBSON R G. Fault-zone seals in siliciclastic strata of the Columbus Basin, offshore Trinidad[J]. AAPG Bulletin, 1994, 78(9): 1372-1385. [32] MENG Lingdong, FU Xiaofei, LV Yanfang, et al. Risking fault reactivation induced by gas injection into depleted reservoirs based on the heterogeneity of geomechanical properties of fault zones[J]. Petroleum Geoscience, 2017, 23(1): 29-38. doi: 10.1144/petgeo2016-031 [33] KNIPE R J. Deformation mechanisms—recognition from natural tectonites[J]. Journal of Structural Geology, 1989, 11(1/2): 127-146. [34] PEI Yangwen, PATON D A, KNIPE R J, et al. A review of fault sealing behaviour and its evaluation in siliciclastic rocks[J]. Earth-Science Reviews, 2015, 150: 121-138. doi: 10.1016/j.earscirev.2015.07.011 [35] WATTS N L. Theoretical aspects of cap-rock and fault seals for single- and two-phase hydrocarbon columns[J]. Marine and Petroleum Geology, 1987, 4(4): 274-307. doi: 10.1016/0264-8172(87)90008-0 [36] SCHOWALTER T T. Mechanics of secondary hydrocarbon migration and entrapment[J]. AAPG Bulletin, 1979, 63(5): 723-760. -