Influencing factors of rock surface relaxivity and pore size conversion method for overpressured reservoirs in Huangliu Formation of Dongfang area, Yinggehai Basin
-
摘要:
莺歌海盆地东方区中新统黄流组超压储层具有岩性细、物性差、储集空间复杂且非均质性强的特征,导致核磁共振T2谱与毛管压力曲线的对应性差,弛豫时间与孔隙半径转换困难。为了明确该储层核磁共振T2谱与孔径的分布关系,解决弛豫时间与孔隙半径转换困难的问题,采用分段建模的方法,结合常规物性、X衍射、核磁共振及高压压汞等实验测试数据,建立了弛豫时间与孔喉半径之间的转换关系,并对不同弛豫区间内表面弛豫速率的主控因素进行了深入分析,采用四元回归分析方法构建了表面弛豫速率的动态表征模型,模型计算效果较好,长短弛豫组分平均相对误差分别为9.965%、2.227%。研究表明:该储层核磁共振T2谱与压汞孔径分布曲线在5.7 ms(对应孔喉半径约为0.1 μm)附近呈现明显分段特征,短弛豫组分(T2<5.7 ms)的表面弛豫速率显著低于长弛豫组分(T2>5.7 ms),证实不同尺度孔隙的表面弛豫机制存在明显差异;表面弛豫速率受储层物性、矿物组分及孔隙结构共同影响,且短弛豫组分表面弛豫速率主要受黏土含量影响,长弛豫组分更依赖孔隙结构复杂程度。基于此,针对不同弛豫区间优选敏感因素建立了表面弛豫速率动态表征模型,实现了表面弛豫速率的定量预测,同时通过分段转换方法显著提升了弛豫时间与孔喉半径的对应精度,为基于核磁共振T2谱的孔隙半径准确转换提供了理论依据和方法支撑,对准确刻画超压储层孔隙结构、提升储层评价精度具有重要意义。
Abstract:The overpressured reservoirs in the Huangliu Formation of the Dongfang area, Yinggehai Basin, are characterized by fine lithology, poor physical properties, complex storage space, and strong heterogeneity, which lead to poor correspondence between nuclear magnetic resonance (NMR) T2 spectrum and capillary pressure curves, making the conversion between relaxation time and pore-throat radius challenging. To clarify the distribution relationship between NMR T2 spectrum and pore-throat radius in such reservoirs and solve the difficulty in converting relaxation time to pore-throat radius, a segmented modeling method was adopted. Combining conventional physical properties, X-ray diffraction, NMR, and high-pressure mercury injection experiments, the conversion relationship between relaxation time and pore-throat radius was developed. The main controlling factors of surface relaxivity in different relaxation intervals were thoroughly analyzed. A four-factor regression analysis method was used to build a dynamic characterization model for surface relaxivity. The model achieved a relatively good calculation performance, with average relative errors of long and short relaxation components being 9.965% and 2.227%, respectively. The results indicated that the NMR T2 spectrum and mercury injection-based pore-throat radius distribution curves of the reservoirs showed obvious segmented characteristics near 5.7 ms (corresponding to a pore-throat radius of about 0.1 μm). The surface relaxivity of short relaxation component (T2 < 5.7 ms) was significantly lower than that of long relaxation component (T2 > 5.7 ms), confirming notable differences in surface relaxation mechanisms across different pores sizes. Surface relaxivity was jointly influenced by reservoir physical properties, mineral composition, and pore structure. The surface relaxivity of short relaxation component was mainly affected by clay content, while the long relaxation component was mainly controlled by pore structure complexity. Based on this, a dynamic surface relaxivity characterization model was constructed through optimizing sensitive factors for different relaxation intervals, achieving quantitative prediction of surface relaxivity. Meanwhile, the correspondence accuracy between relaxation time and pore-throat radius was significantly improved through the segmented conversion method. This approach provides a theoretical basis and methodological support for the accurate conversion of pore-throat radius based on NMR T2 spectrum. The findings are significant for precisely characterizing the pore structure of overpressured reservoirs and improving the accuracy of reservoir evaluation.
-
[1] 李启晖,任大忠,甯波,等.鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J].岩性油气藏,2024,36(2):76-88.LI Qihui,REN Dazhong,NING Bo,et al.Micro-pore structure characteristics of coal seams of Jurassic Yan’an Formation in Shenmu area,Ordos Basin[J].Lithologic Reservoirs,2024,36(2):76-88. [2] 李东升,高平,盖海峰,等.川东南地区龙马溪组页岩有机质纳米孔隙结构表征[J].现代地质,2023,37(5):1293-1305.LI Dongsheng,GAO Ping,GAI Haifeng,et al.Organic nano-pore textural characteristics of the Longmaxi Formation shale in the southeastern Sichuan Basin[J].Geoscience, 2023,37(5):1293-1305. [3] 刘宗宾,李超,路研,等.基于孔隙结构表征的低渗透砂岩流体赋存特征及渗透率评价[J].吉林大学学报(地球科学版),2024,54(4):1124-1136. LIU Zongbin,LI Chao,LU Yan,et al.Fluid occurrence state and permeability evaluation of low-permeability sandstone based on pore structure characterization[J].Journal of Jilin University(Earth Science Edition),2024,54(4):1124-1136. [4] 梁则亮,贾春明,姚卫江,等.核磁共振测井法表征致密砂砾岩储层孔隙结构[J].核电子学与探测技术,2020,40(6):948-954.LIANG Zeliang,JIA Chunming,YAO Weijiang,et al.Method to characterize the pore structure of tight glutenite reservoirs using nuclear magnetic resonance(NMR)logging data[J].Nuclear Electronics & Detection Technology,2020,40(6):948-954. [5] 谢然红,王翔宇,金国文,等.基于核磁共振测井T2谱评价储层孔隙结构仿真实验设计[J].实验科学与技术,2024,22(6):20-27.XIE Ranhong,WANG Xiangyu,JIN Guowen,et al.Simulation experiment design for reservoir pore structure evaluation based on nuclear magnetic resonance logging T2 spectra[J].Experiment Science and Technology,2024,22(6):20-27. [6] 张丽华,潘保芝,单刚义,等.核磁共振频率对蚀变火山岩横向驰豫时间的影响[J].特种油气藏,2023,30(2):20-25.ZHANG Lihua,PAN Baozhi,SHAN Gangyi,et al.Effects of nuclear magnetic resonance frequency on the transverse relaxation time of altered volcanic rocks[J].Special Oil & Gas Reservoirs,2023,30(2):20-25. [7] 刘洋,张宫,覃莹瑶,等.磁场强度及磁场梯度对岩心核磁共振T2谱测量结果的影响[J].石油实验地质,2023,45(2):378-384.LIU Yang,ZHANG Gong,QIN Yingyao,et al.Effects of magnetic field intensity and gradient on measurement results of core nuclear magnetic resonance T2 spectrum[J].Petroleum Geology & Experiment,2023,45(2):378-384. [8] AUSBROOKS R,HURLEY N F,MAY A,et al.Pore-size distributions in vuggy carbonates from core images,NMR,and capillary pressure[C]//SPE Annual Technical Conference and Exhibition.Houston:SPE,1999. [9] SLIJKERMAN W F J,HOFMAN J P,LOOYESTIJN W J,et al.A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data[J].Petrophysics,2001,42(4):334-343. [10] 何雨丹,毛志强,肖立志,等.核磁共振T2分布评价岩石孔径分布的改进方法[J].地球物理学报,2005,48(2):373-378.HE Yudan,MAO Zhiqiang,XIAO Lizhi,et al.An improved method of using NMR T2 distribution to evaluate pore size distribution[J].Chinese Journal of Geophysics,2005,48(2):373-378. [11] 李海波,朱巨义,郭和坤.核磁共振T2谱换算孔隙半径分布方法研究[J].波谱学杂志,2008,25(2):273-280.LI Haibo,ZHU Juyi,GUO Hekun.Methods for calculating pore radius distribution in rock from NMR T2 spectra[J].Chinese Journal of Magnetic Resonance,2008,25(2):273-280. [12] 杨杨,孙建孟,崔瑞康,等.基于核磁共振弛豫法与冻融法的页岩有机孔计算方法[J].测井技术,2022,46(1):35-43.YANG Yang,SUN Jianmeng,CUI Ruikang,et al.Calculation for organic pores in shale based on NMR relaxation method and cryoporometry method[J].Well Logging Technology,2022,46(1):35-43. [13] 吴连波.页岩核磁共振横向弛豫时间与孔径分布量化关系及应用[J].油气地质与采收率,2024,31(1):36-43.WU Lianbo.Quantitative relationship between shale NMR transverse relaxation time and pore size distribution and its application[J].Petroleum Geology and Recovery Efficiency,2024,31(1):36-43. [14] 张伙兰,裴健翔,谢金有,等.莺歌海盆地东方区黄流组一段超压储层孔隙结构特征[J].中国海上油气,2014,26(1):30-38.ZHAG Huolan,PEI Jianxiang,XIE Jinyou,et al.Pore structure characteristics of Member 1 overpressured reservoir in Huangliu Formation,Dongfang area,Yinggehai basin[J].China Offshore Oil and Gas,2014,26(1):30-38. [15] 黄银涛,文力,姚光庆,等.莺歌海盆地东方区黄流组细粒厚层重力流砂体沉积特征[J].石油学报,2018,39(3):290-303.HUANG Yintao,WEN Li,YAO Guangqing,et al.Sedimentary characteristics of thick fine-grained shallow-marine gravity flow deposits from Huangliu Formation in Dongfang area,Yinggehai Basin,China[J].Acta Petrolei Sinica,2018,39(3):290-303. [16] 张鹏,邹韵,杨志鹏,等.莺歌海盆地东方区黄流组沉积单元[J].海洋地质前沿,2019,35(11):7-13.ZHANG Peng,ZOU Yun,YANG Zhipeng,et al.Study on sedimentary units of Huangliu Formation in the Dongfang area of Yinggehai Basin[J].Marine Geology Frontiers,2019,35(11):7-13. [17] 宁卫科,鞠玮,相如.基于神经网络的莺歌海盆地DF区块黄流组储层压力预测与成因分析[J].石油实验地质,2024,46(5):1088-1097.NING Weike,JU Wei,XIANG Ru.Pressure prediction and genesis analysis of Huangliu Formation reservoir in DF block of Yinggehai Basin based on neural networks[J].Petroleum Geology & Experiment,2024,46(5):1088-1097. [18] 黄志龙,朱建成,马剑,等.莺歌海盆地东方区高温高压带黄流组储层特征及高孔低渗成因[J].石油与天然气地质,2015,36(2):288-296.HUANG Zhilong,ZHU Jiancheng,MA Jian,et al.Characteristics and genesis of high-porosity and low-permeability reservoirs in the Huangliu Formation of high temperature and high pressure zone in Dongfang area,Yinggehai Basin[J].Oil & Gas Geology,2015,36(2):288-296. [19] TIAN Huihui,WU Guangshui,WEI Changfu.An NMR-based procedure for evaluating the apparent surface relaxivity and pore size distribution of soils[J].Geotechnical Testing Journal,2024,47(3):670-684. [20] ZHANG Fan,JIANG Zhenxue,ZHANG Yuanhao,et al.A new method for converting T2 spectrum into pore radius[J].Journal of Earth Science,2023,34(4):966-974. [21] 曹阳.核磁共振技术评价致密油储层孔隙结构方法研究[D].大庆:东北石油大学,2020. CAO Yang.Study on the method of evaluating pore structure of tight oil reservoir by the NMR technique[D].Daqing:Northeast Petroleum University,2020. [22] 王跃祥,谢冰,赖强,等.基于核磁共振测井的致密气储层孔隙结构评价与分类[J].地球物理学进展,2023,38(2):759-767.WANG Yuexiang,XIE Bing,LAI Qiang,et al.Evaluation of pore structure and classification in tight gas reservoir based on NMR logging[J].Progress in Geophysics,2023,38(2):759-767. [23] 吴勃翰.致密砂岩储层孔隙结构评价方法及应用研究[D].北京:中国石油大学(北京),2022. WU Bohan.Study on the evaluation and application of pore structure in tight sandstone reservior[D].Beijing:China University of Petroleum(Beijing),2022. [24] 余玥,孙一迪,高睿,等.基于T2截止值确定致密岩心表面弛豫率[J].石油实验地质,2022,44(2):342-349.YU Yue,SUN Yidi,GAO Rui,et al.Determination of surface relaxivity for tight sandstone cores based on T2 cut-off value[J].Petroleum Geology & Experiment,2022,44(2):342-349. [25] 屈凯旋,李国良,于春勇,等.基于核磁共振T2谱的致密砂岩孔喉分布评价方法[J].录井工程,2023,34(2):1-8.QU Kaixuan,LI Guoliang,YU Chunyong,et al.Evaluation method of pore throat distribution in tight sandstones based on NMR T2 spectrum[J].Mud Logging Engineering,2023,34(2):1-8. [26] 刘允隆.致密岩石T2谱与孔隙结构关系的实验研究[D].北京:中国石油大学(北京),2018. LIU Yunlong.Experimental study on relationship between nuclear magnetic resonance T2 spectra and the pore structure of tight rock[D].Beijing:China University of Petroleum(Beijing),2018. [27] 卢振东,刘成林,臧起彪,等.高压压汞与核磁共振技术在致密储层孔隙结构分析中的应用:以鄂尔多斯盆地合水地区为例[J].地质科技通报,2022,41(3):300-310.LU Zhendong,LIU Chenglin,ZANG Qibiao,et al.Application of high pressure mercury injection and nuclear magnetic resonance in analysis of the pore structure of dense sandstone:a case study of the Heshui area,Ordos Basin[J].Bulletin of Geological Science and Technology,2022,41(3):300-310. [28] GE Xinmin,MYERS M T,LIU Jianyu,et al.Determining the transverse surface relaxivity of reservoir rocks:a critical review and perspective[J].Marine and Petroleum Geology,2021,126:104934. [29] 戈革.多孔介质核磁共振表面弛豫机理研究[D].北京:中国石油大学(北京),2018. GE Ge.The mechanism research of NMR surface relaxation in porous media[D].Beijing:China University of Petroleum(Beijing),2018. [30] KEATING K,KNIGHT R.A laboratory study to determine the effect of iron oxides on proton NMR measurements[J].Geophysics,2007,72(1):E27-E32. [31] JAEGER F,BOWE S,VAN AS H,et al.Evaluation of 1H NMR relaxometry for the assessment of pore-size distribution in soil samples[J].European Journal of Soil Science,2009,60(6):1052-1064. [32] VINCENT B,FLEURY M,SANTERRE Y,et al.NMR relaxation of neritic carbonates:An integrated petrophysical and petrographical approach[J].Journal of Applied Geophysics,2011,74(1):38-58. [33] KEATING K,ROBINSON J,SLATER L,et al.Improving pore-size distribution and permeability prediction from NMR using DT2 maps[C]//SEG International Exposition and Annual Meeting.San Antonio,USA:SEG,2019. [34] SAIDIAN M,PRASAD M.Effect of mineralogy on nuclear magnetic resonance surface relaxivity:a case study of middle Bakken and Three Forks formations[J].Fuel,2015,161:197-206. [35] 葛新民,范宜仁,曾青冬,等.基于ADI-FDTD模拟的岩石核磁共振横向弛豫特征分析[J].计算物理,2013,30(2):237-243.GE Xinmin,FAN Yiren,ZENG Qingdong,et al.Analysis of NMR transversal relaxation based on ADI-FDTD numerical simulation[J].Chinese Journal of Computational Physics,2013,30(2):237-243. [36] 谢然红,肖立志,傅少庆.饱和水岩石核磁共振表面弛豫温度特性[J].中国石油大学学报(自然科学版),2008,32(2):44-46. XIE Ranhong,XIAO Lizhi,FU Shaoqing.Temperature effect of NMR surface relaxation in water saturated rocks[J].Journal of China University of Petroleum,2008,32(2):44-46. [37] LIVO K,SAIDIAN M,PRASAD M.Effect of paramagnetic mineral content and distribution on nuclear magnetic resonance surface relaxivity in organic-rich Niobrara and Haynesville shales[J].Fuel,2020,269:117417. [38] 贾子健.页岩核磁共振弛豫机制与测量方法研究[D].北京:中国石油大学(北京),2017. JIA Zijian.Study of magnetic resonance relaxation mechanism and measurement method on shale[D].Beijing:China University of Petroleum(Beijing),2017. [39] 曾星航,祁尚义,许国庆,等.带压渗吸核磁共振实验研究:以江汉盆地潜江凹陷潜江组泥质白云岩为例[J].油气地质与采收率,2023,30(1):122-128.ZENG Xinghang,QI Shangyi,XU Guoqing,et al.Experimental study on forced imbibition by NMR:A case of argillaceous dolomite of Qianjiang Formation in Jianghan Basin[J].Petroleum Geology and Recovery Efficiency,2023,30(1):122-128. -
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 0
下载:
苏公网安备32021102000780号