Xiong Yanmei, Mei Shengwen, Liu Hongguang, He Wang. Study and application of waterflooding indication curve in fractured-vuggy heavy oil reservoir[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2013, 35(S1): 49-051. doi: 10.11781/sysydz2013S1049
Citation: WANG Baohua, LI Hao, LU Jianlin, LÜ Jianhong, WANG Miao, ZHAO Linjie. Quantitative characterization of development of permeable interlayers in continental shale strata[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(6): 879-884. doi: 10.11781/sysydz201906879

Quantitative characterization of development of permeable interlayers in continental shale strata

doi: 10.11781/sysydz201906879
  • Received Date: 2019-03-13
  • Rev Recd Date: 2019-07-25
  • Publish Date: 2019-11-28
  • Exploration practice shows that the development of sandstone interlayers or carbonate interlayers in organic-rich shale intervals is one of the key factors for shale oil enrichment and high yield. At present, there is no quantitative evaluation model or method for the development degree of these interlayers. The quantitative evaluation model of relative hypertonic interlayers in shale is established. It is of great significance to improve the quantitative evaluation process. A mathematical model for characterizing the development of the interlayers is established by using the position and dispersion of interlayers in a formation. Based on seismic inversion data, three-dimensional structural modeling and drilling data of the lithology properties of the formation, the virtual/actual drilling lithology data is used as the calculation unit, and the sandstone thin interlayer index (STI) is used as the constraint value. The developmental strength (DS), distribution position (DP) and dispersion coefficient (DC) of the well were calculated. Then, the STI is calculated by normalization, and the main source direction is determined by the results of sedimentary facies research. The STI plane distribution of the target layer is calculated by Kriging interpolation. Using the above method, the STI of the upper part of the Shahejie Formation in the Dongying Sag was calculated. Compared with the existing drilling test results, the STI of the high-yield well is mainly between 0.4 and 0.8, indicating that the STI distribution range has a guiding significance for shale oil exploration.

     

  • [1]
    赵贤正,周立宏,蒲秀刚,等.陆相湖盆页岩层系基本地质特征与页岩油勘探突破:以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J].石油勘探与开发,2018,45(3):361-372.

    ZHAO Xianzheng,ZHOU Lihong,PU Xiugang,et al.Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin:a case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong Sag,Bohai Bay Basin,China[J].Petroleum Exploration and Development,2018,45(3):361-372.
    [2]
    杨智,侯连华,林森虎,等.吉木萨尔凹陷芦草沟组致密油、页岩油地质特征与勘探潜力[J].中国石油勘探,2018,23(4):76-85.

    YANG Zhi,HOU Lianhua,LIN Senhu,et al.Geologic characteristics and exploration potential of tight oil and shale oil in Lucaogou Formation in Jimsar Sag[J].China Petroleum Exploration,2018,23(4):76-85.
    [3]
    EIA.Technically recoverable shale oil and shale gas resources:an assessment of 137 shale formations in 41 countries outside the United States[M].Washington DC:ARI,2013.
    [4]
    U.S. Energy Information Administration.Annual energy outlook 2017[R].Washington DC:U.S. Energy Information Administration,2017.
    [5]
    EGENHOFF S O,FISHMAN N S.Traces in the dark:sedimentary processes and facies gradients in the upper shale member of the Upper Devonian-Lower Mississippian Bakken Formation,Williston Basin,North Dakota,U.S.A.[J].Journal of Sedimentary Research,2014,83(9):803-824.
    [6]
    姜生玲,张金川,李博,等.中国现阶段页岩气资源评价方法分析[J].断块油气田,2017,24(5):642-646.

    JIANG Shengling,ZHANG Jinchuan,LI Bo,et al.Analysis of shale gas resources assessment method in China[J].Fault-Block Oil and Gas Field,2017,24(5):642-646.
    [7]
    余涛,卢双舫,李俊乾,等.东营凹陷页岩油游离资源有利区预测[J].断块油气田,2018,25(1):16-21.

    YU Tao,LU Shuangfang,LI Junqian,et al.Prediction for favorable area of shale oil free resources in Dongying Sag[J].Fault-Block Oil and Gas Field,2018,25(1):16-21.
    [8]
    周立宏,于超,滑双君,等.沧东凹陷孔二段页岩油资源评价方法与应用[J].特种油气藏,2017,24(6):1-6.

    ZHOU Lihong,YU Chao,HUA Shuangjun,et al.Shale oil resource estimation and application in Kong2 Member of Cangdong Sag[J].Special Oil & Gas Reservoirs,2017,24(6):1-6.
    [9]
    谢文泉,刘招君,肖丽佳,等.柴北缘鱼卡地区中侏罗统石门沟组油页岩资源潜力[J].特种油气藏,2018,25(5):78-83.

    XIE Wenquan,LIU Zhaojun,XIAO Lijia,et al.Oil shale resource potential of the Middle Jurassic Shimengou Formation in Yuka of the north rim in Qaidam Basin[J].Special Oil & Gas Reservoirs,2018,25(5):78-83.
    [10]
    高辉,何梦卿,赵鹏云,等.鄂尔多斯盆地长7页岩油与北美地区典型页岩油地质特征对比[J].石油实验地质,2018,40(2):133-140.

    GAO Hui,HE Mengqing,ZHAO Pengyun,et al.Comparison of geological characteristics of Chang 7 shale oil in Ordos Basin and typical shale oil in North America[J].Petroleum Geology & Experiment,2018,40(2):133-140.
    [11]
    包友书.渤海湾盆地东营凹陷古近系页岩油主要赋存空间探索[J].石油实验地质,2018,40(4):479-484.

    BAO Youshu.Effective reservoir spaces of Paleogene shale oil in the Dongying Depression,Bohai Bay Basin[J].Petroleum Geo-logy & Experiment,2018,40(4):479-484.
    [12]
    包友书.济阳坳陷超压和应力场对页岩油富集的影响[J].断块油气田,2018,25(5):585-588.

    BAO Youshu.Influence of overpressure and stress on shale oil enrichment in Jiyang Depression[J].Fault-Block Oil and Gas Field,2018,25(5):585-588.
    [13]
    崔景伟,朱如凯,杨智,等.国外页岩层系石油勘探开发进展及启示[J].非常规油气,2015,2(4):68-82.

    CUI Jingwei,ZHU Rukai,YANG Zhi,et al.Progresses and enlighten-ment of overseas shale oil exploration and development[J].Unconventonal Oil & Gas,2015,2(4):68-82.
    [14]
    王保华,陆建林,李浩,等.基于孔隙成因的泥页岩总孔隙度恢复方法研究:以渤海湾盆地东营凹陷沙三下亚段为例[J].石油实验地质,2017,39(5):724-728.

    WANG Baohua,LU Jianlin,LI Hao,et al.Recovery method for total porosity of shale based on porosity origin:a case study of the lower part of the third member of Shahejie Formation in the Dongying Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2017,39(5):724-728.
    [15]
    李红英,陈善斌,杨志成,等.巨厚油层隔夹层特征及其对剩余油分布的影响:以渤海湾盆地L油田为例[J].断块油气田,2018,25(6):709-714.

    LI Hongying,CHEN Shanbin,YANG Zhicheng,et al.Characte-ristics of interbeds in thick oil layer and its effect on remaining oil distribution:a case study of L Oilfield,Bohai Bay Basin[J].Fault-Block Oil and Gas Field,2018,25(6):709-714.
    [16]
    李佳欣.观音桥段地质特征及其对页岩气产量的影响:以南川地区为例[J].油气藏评价与开发,2018,8(4):68-72.

    Li Jiaxin.Geological features of Guanyinqiao member and its influence on the shale gas production:a case study of Nanchuan district[J].Reservoir Evaluation and Development,2018,8(4):68-72.
    [17]
    刘毅,陆正元,戚明辉,等.渤海湾盆地沾化凹陷沙河街组页岩油微观储集特征[J].石油实验地质,2017,39(2):180-185.

    LIU Yi,LU Zhengyuan,QI Minghui,et al.Microscopic characteristics of shale oil reservoirs in Shahejie Formation in Zhanhua Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2017,39(2):180-185.
    [18]
    王勇,宋国奇,刘惠民,等.济阳坳陷页岩油富集主控因素[J].油气地质与采收率,2015,22(4):20-25.

    WANG Yong,SONG Guoqi,LIU Huimin,et al.Main control factors of enrichment characteristics of shale oil in Jiyang Depression[J].Petroleum Geology and Recovery Efficiency,2015,22(4):20-25.
    [19]
    中华人民共和国国土资源部.页岩气资源/储量计算与评价技术规范:DZ/T 0254-2014[S].北京:中国标准出版社,2014. Ministry of Land and Resources of the People's Republic of China.Technical specification for calculating and evaluating shale gas resources/reserves:DZ/T 0254-2014[S].Beijing:China Standards Publishing House,2014.
    [20]
    邹才能,董大忠,王玉满,等.页岩气地质评价方法:GB/T 31483-2015[S].北京:中国标准出版社,2015. ZOU Caineng,DONG Dazhong,WANG Yuman,et al.Geological evaluation methods for shale gas:GB/T 31483-2015[S].Beijing:China Standards Publishing House,2015.
    [21]
    刘超英,徐旭辉,刘翠荣,等.页岩油勘探选区评价方法:Q/SH 0505-2013[S].北京:中国石化出版社,2013. LIU Chaoying,XU Xuhui,LIU Cuirong,et al.Shale oil exploration constituency evaluation method:Q/SH 0505-2013[S].Beijing:China Petrochemical Press,2013.
    [22]
    朱德顺,王勇,朱德燕,等.渤南洼陷沙一段夹层型页岩油界定标准及富集主控因素[J].油气地质与采收率,2015,22(5):15-20.

    ZHU Deshun,WANG Yong,ZHU Deyan,et al.Analysis on recognition criteria and enrichment factors of interlayer shale oil of Es1 in Bonan Subsag[J].Petroleum Geology and Recovery Efficiency,2015,22(5):15-20.
  • Relative Articles

    [1]LIU Yao, RONG Yuanshuai, YANG Min. Detailed classification and evaluation of reserves in fracture-cavity units for carbonate fracture-cavity reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2018, 40(3): 431-438. doi: 10.11781/sysydz201803431
    [2]Ren Ke, Jiang Lin, Huang Mina, Liang Sha, Tang Bochao, Li Guiyun. Application and research of quantitative water injection to improve oil recovery in Tahe carbonate oil field[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(S1): 62-65. doi: 10.11781/sysydz2016S1062
    [3]Li Guiyun, Tian Lei, Huang Mina, Lu Haitao, Ren Ke, Liu Hongyuan. Study and application of connecting relationship during water injection of well groups in carbonate reservoirs, Tahe oil field[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(S1): 48-51. doi: 10.11781/sysydz2016S1048
    [4]Cui Guang, Luo Fengming, Yin Bei. Causes and countermeasures for the sticking of electric imaging logging instrument in carbonate rocks, Tahe oil field[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(S1): 5-7. doi: 10.11781/sysydz2016S1005
    [5]Zhang Wei. Exploration technology for fractured-vuggy condensate gas reservoirs in block 9 of the Tahe Oil Field[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2015, 37(S1): 66-69. doi: 10.11781/sysydz2015S1066
    [6]Tian Jiang, Yang Yingda. Development and application of acid fluid system for acid fracturing of high-temperature carbonate reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2014, 36(s1): 67-69. doi: 10.11781/sysydz2014S1067
    [7]Ding Lei, Zhang Shiliang, Hai Tao, Yao Junbo. Application of water injection indicative curves in deep pumping of carbonate reservoirs in Tahe Oilfield[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2014, 36(s1): 77-80. doi: 10.11781/sysydz2014S1077
    [8]Jin Peng, Chen Shanqin. Causes for water flooding failures in carbonate fractured-vuggy reservoirs[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2013, 35(S1): 72-077. doi: 10.11781/sysydz2013S1072
    [9]Guo Zhongliang, He Wang, Hai Tao. Application of water injection curve in reconstruction of vuggy reservoirs in Tahe area[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2013, 35(S1): 69-071. doi: 10.11781/sysydz2013S1069
    [11]Wang Xiang, Lü Xiuxiang, Liu Guoyong, Zhang Yanping, Jiao Weiwei, Hua Xiaoli. Hydrocarbon carrier system of carbonate rock and exploration direction in Tahe Oilfield, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2012, 34(1): 14-18. doi: 10.11781/sysydz201201014
    [12]Deng Guangxiao, Li Haiying, Wang Zhen. Application of 3D visual and superimposed technique in carbonate reservoir prediction,Tahe Oil Field[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2011, 33(S1): 5-8. doi: 10.11781/sysydz2011S1005
    [13]Qin Weiqiang, Cui Qingyu, Liu Jianhua, Zhang Weifeng. Application of image-logging technique Tahe Oil Field in carbonate reservoir evaluation[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2011, 33(S1): 61-63. doi: 10.11781/sysydz2011S1061
    [14]Ding Yong, Peng Shoutao, Li Huijun. Features and main controlling factors of carbonate reservoirs in Tahe Oil field and northern Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2011, 33(5): 488-494. doi: 10.11781/sysydz201105488
    [15]Yang Ning, Lü Xiuxiang, Chen Meitao, Zheng Duoming. STUDY OF THE CHARACTERISTICS OF CARBONATE RESERVOIRS IN LUNNAN AND TAHE OIL FIELDS, THE TARIM BASIN—TAKING WELLS S107 AND LG40 AS EXAMPLES[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2008, 30(3): 247-251. doi: 10.11781/sysydz200803247
    [16]Zhang Dajing, Miao Li, Bai Senshu. PETROLEUM RESERVES CALCULATION IN CARBONATE FORMATIONS METHOD USING RESERVOIR CONTROLLED UNIT COEFFICIENTS[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2005, 27(6): 635-639. doi: 10.11781/sysydz200506635
    [17]CHEN Qiang-lu, QIAN Yi-xiong, MA Hong-qiang, Wang Shu-yi. DIAGENESIS AND POROSITY EVOLUTION OF THE ORDOVICIAN CARBONATE ROCKS IN TAHE OILFIELD, TARIM BASIN[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2003, 25(6): 729-734. doi: 10.11781/sysydz200306729
    [18]LIU Wen, LI Yonghong, ZHANG Tao, LI Guorong. STUDY ON THE SEDIMENTARY FACIES AND SEQUENCE STRATIGRAPHY OF THE ORDOVICIAN CARBONATE ROCK IN TAHE OILFIELD[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2002, 24(2): 104-109. doi: 10.11781/sysydz200202104
    [19]HUANG Xiao-te. AN APPROACH ON THE DEVELOPMENT TECHNOLOGIES OF FISSURE-KARST CAVE-TYPED HYDROCARBON POOLS IN CARBONATE ROCK[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2002, 24(5): 446-449. doi: 10.11781/sysydz200205446
    [20]HE Faqi, ZHOU Jiaju, YU Lu. NEW TECHNOLOGIES FOR HYDROCARBON EXPLORATION IN TAHE OILFIELD OF THE TARIM BASIN[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2001, 23(3): 318-323. doi: 10.11781/sysydz200103318
  • Cited by

    Periodical cited type(7)

    1. 宋振响 ,周卓明 ,江兴歌 ,陈拥锋 ,马中良 ,罗昕 ,李振明 . 常规-非常规油气资源一体化评价方法——基于全油气系统理论和TSM盆地模拟技术. 石油学报. 2023(09): 1487-1499 .
    2. 罗胜元,李培军,陈孝红,倪方杰,李海,刘安. 鄂西宜昌地区寒武系页岩测井评价及优质储层识别. 华南地质. 2022(03): 417-430 .
    3. 李浩,王保华,陆建林,鹿坤,王苗,周燕,赵琳洁. 东濮凹陷古近系页岩油富集地质条件与勘探前景. 中国石油大学学报(自然科学版). 2021(03): 33-41 .
    4. 刘显阳,李士祥,郭芪恒,周新平,刘江艳. 鄂尔多斯盆地延长组长7_3亚段泥页岩层系岩石类型特征及勘探意义. 天然气地球科学. 2021(08): 1177-1189 .
    5. 陈义国,贺永红,王超,葛新民,马芳侠,孟旺才,葛云锦,李晓路,樊笑微. 鄂尔多斯盆地三叠系延长组8段非常规油藏成因与成藏模式——以盆地东南部甘泉西区为例. 石油学报. 2021(10): 1270-1286 .
    6. 徐黎明,郭芪恒,刘元博,刘江艳,周新平,李士祥. 鄂尔多斯盆地长7_3亚段深水重力流砂岩储层特征及控制因素——以华池地区CY1井为例. 天然气地球科学. 2021(12): 1797-1809 .
    7. 李浩,陆建林,王保华,鹿坤,周燕,王苗,赵琳洁,宋在超. 渤海湾盆地东濮凹陷陆相页岩油可动性影响因素与资源潜力. 石油实验地质. 2020(04): 632-638 . 本站查看

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-05010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.9 %FULLTEXT: 21.9 %META: 76.1 %META: 76.1 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.6 %其他: 2.6 %China: 0.2 %China: 0.2 %India: 0.1 %India: 0.1 %Malvern: 0.1 %Malvern: 0.1 %[]: 0.1 %[]: 0.1 %三门峡: 0.1 %三门峡: 0.1 %上海: 0.3 %上海: 0.3 %东营: 0.1 %东营: 0.1 %临汾: 0.1 %临汾: 0.1 %丽水: 1.0 %丽水: 1.0 %北京: 2.3 %北京: 2.3 %南宁: 0.6 %南宁: 0.6 %南昌: 0.3 %南昌: 0.3 %印度德里: 0.3 %印度德里: 0.3 %台州: 9.4 %台州: 9.4 %哥伦布: 0.1 %哥伦布: 0.1 %大庆: 0.2 %大庆: 0.2 %天津: 0.5 %天津: 0.5 %平顶山: 0.3 %平顶山: 0.3 %弗吉尼亚州: 0.3 %弗吉尼亚州: 0.3 %张家口: 2.6 %张家口: 2.6 %徐州: 0.3 %徐州: 0.3 %成都: 0.9 %成都: 0.9 %无锡: 0.3 %无锡: 0.3 %昆明: 0.3 %昆明: 0.3 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 4.0 %杭州: 4.0 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.2 %沈阳: 0.2 %河池: 0.3 %河池: 0.3 %济南: 0.3 %济南: 0.3 %温州: 0.1 %温州: 0.1 %湖州: 4.3 %湖州: 4.3 %湘潭: 0.1 %湘潭: 0.1 %湛江: 0.2 %湛江: 0.2 %漯河: 0.4 %漯河: 0.4 %漳州: 0.3 %漳州: 0.3 %珠海: 0.3 %珠海: 0.3 %百色: 0.3 %百色: 0.3 %盘锦: 0.3 %盘锦: 0.3 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 22.9 %芒廷维尤: 22.9 %莫斯科: 0.7 %莫斯科: 0.7 %衡水: 0.2 %衡水: 0.2 %衢州: 4.1 %衢州: 4.1 %襄阳: 0.2 %襄阳: 0.2 %西宁: 31.3 %西宁: 31.3 %辽阳: 0.1 %辽阳: 0.1 %运城: 1.0 %运城: 1.0 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.2 %郑州: 0.2 %重庆: 0.1 %重庆: 0.1 %金华: 1.2 %金华: 1.2 %锦州: 0.2 %锦州: 0.2 %长沙: 0.2 %长沙: 0.2 %长治: 0.1 %长治: 0.1 %阿什本: 0.4 %阿什本: 0.4 %首尔: 0.3 %首尔: 0.3 %马鞍山: 0.5 %马鞍山: 0.5 %鹰潭: 0.1 %鹰潭: 0.1 %黔南: 0.1 %黔南: 0.1 %龙岩: 0.3 %龙岩: 0.3 %其他ChinaIndiaMalvern[]三门峡上海东营临汾丽水北京南宁南昌印度德里台州哥伦布大庆天津平顶山弗吉尼亚州张家口徐州成都无锡昆明晋城朝阳杭州武汉沈阳河池济南温州湖州湘潭湛江漯河漳州珠海百色盘锦绍兴芒廷维尤莫斯科衡水衢州襄阳西宁辽阳运城遵义邯郸郑州重庆金华锦州长沙长治阿什本首尔马鞍山鹰潭黔南龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (989) PDF downloads(106) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return