YANG Zhifeng, TANG Yong, GUO Xuguang, HUANG Liliang, WANG Ziqiang, ZHAO Xinmei. Occurrence states and potential influencing factors of shale oil in the Permian Fengcheng Formation of Mahu Sag, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 784-796. doi: 10.11781/sysydz202105784
Citation: YANG Zhifeng, TANG Yong, GUO Xuguang, HUANG Liliang, WANG Ziqiang, ZHAO Xinmei. Occurrence states and potential influencing factors of shale oil in the Permian Fengcheng Formation of Mahu Sag, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 784-796. doi: 10.11781/sysydz202105784

Occurrence states and potential influencing factors of shale oil in the Permian Fengcheng Formation of Mahu Sag, Junggar Basin

doi: 10.11781/sysydz202105784
  • Received Date: 2021-05-18
  • Rev Recd Date: 2021-07-20
  • Publish Date: 2021-09-28
  • Taking the Permian Fengcheng Formation of the Mahu Sag of the Junggar Basin as an example, a systematic study of shale oil was carried out for the occurrence states and potential influencing factors by integrating various data including cores, well logging, X-ray diffraction, argon ion polishing and field emission-scanning electron microscopy (FE-SEM) observations, high-pressure mercury injection (HPMI), rock pyrolysis, and two-dimensional nuclear magnetic resonance (NMR) experiments. The shale oil of the Fengcheng Formation in the Mahu Sag mainly has two modes of occurrence: film-like adsorbed oil and infilled free oil. The main constrains for shale oil occurrence state include lithofacies association, mineral composition and reservoir space. Four lithofacies associations namely dolomitic shale, sandy shale-dolomitic siltstone, dolomite rock containing alkaline mineral-argillaceous siltstone, and siliceous dolomite rock-dolomitic siltstone were recognized in the shale reservoirs of the Fengcheng Formation. The mineral composition, reservoir space, micro-pore structure and shale oil occurrence states of different lithofacies appeared to be quite different. The contents of quartz, pyrite and organic matter were positively correlated with thermal cracking hydrocarbon (S2), and the contents of feldspar and dolomite showed a weak positive correlation with free hydrocarbon (S1). The free oil was mainly stored in mesopores and large pores, such as secondary dissolution pores and residual intergranular pores. The absorbed oil was mainly stored in mesopores and small pores, such as organic pores, intercrystallite pores and the surface of mineral particles. The mineral composition and pore-throat structure were dominant factors controlling the occurrence state of shale oil.

     

  • [1]
    邹才能, 朱如凯, 白斌, 等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报, 2015, 34(1): 3-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htm

    ZOU Caineng, ZHU Rukai, BAI Bin, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 3-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htm
    [2]
    贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm

    JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
    [3]
    邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm

    ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
    [4]
    CAO Hairen, ZOU Yanrong, LEI Yan, et al. Shale oil assessment for the Songliao Basin, Northeastern China, using oil generation-sorption method[J]. Energy & Fuels, 2017, 31(5): 4826-4842. doi: 10.1021/acs.energyfuels.7b00098
    [5]
    LIANG Chao, CAO Yingchang, JIANG Zaixing, et al. Shale oil potential of lacustrine black shale in the Eocene Dongying Depression: implications for geochemistry and reservoir characteristics[J]. AAPG Bulletin, 2017, 101(11): 1835-1858. doi: 10.1306/01251715249
    [6]
    CHEN Guohui, LU Shuangfang, ZHANG Junfang, et al. Estimation of enriched shale oil resource potential in E2s4L of Damintun Sag in Bohai Bay Basin, China[J]. Energy & Fuels, 2017, 31(4): 3635-3642.
    [7]
    CUI Jingwei, LI Sen, MAO Zhiguo. Oil-bearing heterogeneity and threshold of tight sandstone reservoirs: a case study on Triassic Chang 7 member, Ordos Basin[J]. Marine and Petro-leum Geo-logy, 2019, 104: 180-189. doi: 10.1016/j.marpetgeo.2019.03.028
    [8]
    LAI Jin, WANG Guiwen, RAN Ye, et al. Impact of diagenesis on the reservoir quality of tight oil sandstones: the case of Upper Triassic Yanchang Formation Chang 7 oil layers in Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2016, 145: 54-65. doi: 10.1016/j.petrol.2016.03.009
    [9]
    SUN Ningliang, ZHONG Jianhua, HAO Bing, et al. Sedimentological and diagenetic control on the reservoir quality of deep-lacustrine sedimentary gravity flow sand reservoirs of the Upper Triassic Yanchang Formation in southern Ordos Basin, China[J]. Marine and Petroleum Geology, 2020, 112: 104050. doi: 10.1016/j.marpetgeo.2019.104050
    [10]
    JIANG Shu, CHEN Lei, WU Yue, et al. Hybrid plays of Upper Triassic Chang7 lacustrine source rock interval of Yanchang Formation, Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 159: 182-196. doi: 10.1016/j.petrol.2017.09.033
    [11]
    LI Xin, JIANG Zhenxue, SONG Yan, et al. Porosity evolution mechanisms of marine shales at over-maturity stage: insight from comparable analysis between Lower Cambrian and Lower Silurian inside and at the margin of the Sichuan Basin, South China[J]. Interpretation, 2018, 6(3): T739-T757. doi: 10.1190/INT-2017-0221.1
    [12]
    WANG Xiao, HE Sheng, GUO Xiaowen, et al. The resource evaluation of Jurassic shale in north Fuling area, eastern Sichuan Basin, China[J]. Energy & Fuels, 2018, 32(2): 1213-1222.
    [13]
    ZHANG Guoyin, WANG Zhizhang, GUO Xuguang, et al. Characteristics of lacustrine dolomitic rock reservoir and accumulation of tight oil in the Permian Fengcheng Formation, the western slope of the Mahu Sag, Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 2019, 178: 64-80. doi: 10.1016/j.jseaes.2019.01.002
    [14]
    LUO Qingyong, GONG Lei, QU Yansheng, et al. The tight oil potential of the Lucaogou Formation from the southern Junggar Basin, China[J]. Fuel, 2018, 234: 858-871. doi: 10.1016/j.fuel.2018.07.002
    [15]
    黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489

    LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489
    [16]
    宋明水. 济阳坳陷页岩油勘探实践与现状[J]. 油气地质与采收率, 2019, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htm

    SONG Mingshui. Practice and current status of shale oil exploration in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htm
    [17]
    付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42(5): 698-710. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005009.htm

    FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 698-710. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005009.htm
    [18]
    王小军, 杨智峰, 郭旭光, 等. 准噶尔盆地吉木萨尔凹陷页岩油勘探实践与展望[J]. 新疆石油地质, 2019, 40(4): 402-413. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904003.htm

    WANG Xiaojun, YANG Zhifeng, GUO Xuguang, et al. Practices and prospects of shale oil exploration in Jimsar Sag of Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 402-413. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904003.htm
    [19]
    李浩, 陆建林, 王保华, 等. 渤海湾盆地东濮凹陷陆相页岩油可动性影响因素与资源潜力[J]. 石油实验地质, 2020, 42(4): 632-638. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004020.htm

    LI Hao, LU Jianlin, WANG Baohua, et al. Controlling factors of continental shale oil mobility and resource potential in Dongpu Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 632-638. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202004020.htm
    [20]
    冯国奇, 李吉君, 刘洁文, 等. 泌阳凹陷页岩油富集及可动性探讨[J]. 石油与天然气地质, 2019, 40(6): 1236-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906008.htm

    FENG Guoqi, LI Jijun, LIU Jiewen, et al. Discussion on the enrichment and mobility of continental shale oil in Biyang Depression[J]. Oil & Gas Geology, 2019, 40(6): 1236-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906008.htm
    [21]
    支东明, 唐勇, 杨智峰, 等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 524-434. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903009.htm

    ZHI Dongming, TANG Yong, YANG Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903009.htm
    [22]
    LI Zheng, ZOU Yanrong, XU Xingyou, et al. Adsorption of mudstone source rock for shale oil: experiments, model and a case study[J]. Organic Geochemistry, 2016, 92: 55-62. https://www.sciencedirect.com/science/article/pii/S0146638015002417
    [23]
    蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606020.htm

    JIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38(6): 842-849. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201606020.htm
    [24]
    LI Pan, SUN Wei, WU Bolin, et al. Occurrence characteristics and main controlling factors of movable fluids in Chang 81 reservoir, Maling Oilfield, Ordos Basin, China[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(1): 17-29. doi: 10.1007/s13202-018-0471-2
    [25]
    GAO Hui, LI Huazhou. Determination of movable fluid percentage and movable fluid porosity in ultra-low permeability sandstone using nuclear magnetic resonance (NMR) technique[J]. Journal of Petroleum Science and Engineering, 2015, 133: 258-267. https://www.sciencedirect.com/science/article/pii/S0920410515300279
    [26]
    LI Jinbu, HUANG Wenbiao, LU Shuangfang, et al. Nuclear magnetic resonance T1-T2 map division method for hydrogen-bearing components in continental shale[J]. Energy & Fuels, 2018, 32(9): 9043-9054.
    [27]
    ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. 1D and 2D Nuclear Magnetic Resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks[J]. Marine and Petroleum Geology, 2020, 114: 104210.
    [28]
    LI Jinbu, JIANG Chunqing, Wang Min, et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: a new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311.
    [29]
    FLEURY M, ROMERO-SARMIENTO M. Characterization of shales using T1-T2 NMR maps[J]. Journal of Petroleum Science and Engineering, 2016, 137: 55-62. https://www.sciencedirect.com/science/article/pii/S0920410515301728
    [30]
    KORB J P, NICOT B, JOLIVET I. Dynamics and wettability of petroleum fluids in shale oil probed by 2D T1-T2 and fast field cycling NMR relaxation[J]. Microporous and Mesoporous Materials, 2018, 269: 7-11.
    [31]
    MEHANA M, EL-MONIER I. Shale characteristics impact on Nuclear Magnetic Resonance (NMR) fluid typing methods and correlations[J]. Petroleum, 2016, 2(2): 138-147. https://www.sciencedirect.com/science/article/pii/S2405656116000110
    [32]
    CUI Jiangfeng, CHENG Long. A theoretical study of the occurrence state of shale oil based on the pore sizes of mixed Gaussian distribution[J]. Fuel, 2017, 206: 564-571. https://www.sciencedirect.com/science/article/pii/S0016236117307470
    [33]
    WANG Sen, FENG Qihong, ZHA Ming, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and slits of shale organic matter[J]. Petroleum Exploration and Development, 2015, 42(6): 844-851. https://www.sciencedirect.com/science/article/pii/S1876380415300811
    [34]
    TIAN Shansi, XUE Haitao, LU Shuangfang, et al. Molecular simulation of oil mixture adsorption character in shale system[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6198-6209.
    [35]
    SU Siyuan, JIANG Zhenxue, SHAN Xuanlong, et al. The effects of shale pore structure and mineral components on shale oil accumulation in the Zhanhua Sag, Jiyang Depression, Bohai Bay Basin, China[J]. Journal of Petroleum Science and Engineering, 2018, 165: 365-374.
    [36]
    王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4): 789-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904020.htm

    WANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration & Development, 2019, 46(4): 789-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904020.htm
    [37]
    张志杰, 袁选俊, 汪梦诗, 等. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化[J]. 石油勘探与开发, 2018, 45(6): 972-984. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806006.htm

    ZHANG Zhijie, YUAN Xuanjun, WANG Mengshi, et al. Alkaline-lacustrine deposition and Paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 972-984. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806006.htm
    [38]
    胡涛, 庞雄奇, 于飒, 等. 准噶尔盆地风城地区风城组烃源岩生排烃特征及致密油资源潜力[J]. 中南大学学报(自然科学版), 2017, 48(2): 427-439. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201702022.htm

    HU Tao, PANG Xiongqi, YU Sa, et al. Hydrocarbon generation and expulsion characteristics of P1f source rocks and tight oil accumulation potential of Fengcheng area on northwest margin of Junggar Basin, Northwest China[J]. Journal of Central South University (Science and Technology), 2017, 48(2): 427-439. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201702022.htm
    [39]
    支东明, 唐勇, 何文军, 等. 准噶尔盆地玛湖凹陷风城组常规—非常规油气有序共生与全油气系统成藏模式[J]. 石油勘探与开发, 2021, 48(1): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101006.htm

    ZHI Dongming, TANG Yong, HE Wenjun, et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Exploration and Deve-lopment, 2021, 48(1): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101006.htm
    [40]
    朱世发, 刘欣, 马勋, 等. 准噶尔盆地下二叠统风城组致密碎屑岩储层发育特征[J]. 高校地质学报, 2015, 21(3): 461-470. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201503010.htm

    ZHU Shifa, LIU Xin, MA Xun, et al. The development characteristics of tight clastic reservoirs in the Lower Permian Fengcheng Formation in Wu-Xia area of the Junggar Basin[J]. Geological Journal of China Universities, 2015, 21(3): 461-470. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201503010.htm
    [41]
    王力宝, 厚刚福, 卞保力, 等. 现代碱湖对玛湖凹陷风城组沉积环境的启示[J]. 沉积学报, 2020, 38(5): 911-922. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005002.htm

    WANG Libao, HOU Gangfu, BIAN Baoli, et al. The role of modern alkaline lakes in explaining the sedimentary environment of the Fengcheng Formation, Mahu Depression[J]. Acta Sedimentologica Sinica, 2020, 38(5): 911-922. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005002.htm
    [42]
    XI Kelai, CAO Yingchang, LIU Keyu, et al. Authigenic minerals related to wettability and their impacts on oil accumulation in tight sandstone reservoirs: an example from the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China[J]. Journal of Asian Earth Sciences, 2019, 178: 173-192.
    [43]
    LI Jinbu, LU Shuangfang, CHEN Guohui, et al. A new method for measuring shale porosity with low-field nuclear magnetic resonance considering non-fluid signals[J]. Marine and Petro-leum Geology, 2019, 102: 535-543.
  • Relative Articles

  • Cited by

    Periodical cited type(36)

    1. 钱永新,赵毅,刘新龙,刘鸿,刘国梁,朱涛,邹阳,陈方文. 玛湖凹陷二叠系风城组页岩油储层特征及高产主控因素. 岩性油气藏. 2025(01): 115-125 .
    2. 贾凡建,王建伟,郭瑞超,赵乐强,张卓,吴智平,李艳丽. 准噶尔盆地哈山地区风城组页岩含油性评价. 大庆石油地质与开发. 2025(01): 25-34 .
    3. 张洪,冯有良,杨智,何文军,高之业,李嘉蕊,丁立华,蒋文琦,马国明,赵辛楣. 碱湖页岩油甜点储层特征及其形成机制——以准噶尔盆地玛湖凹陷风城组为例. 地质学报. 2025(02): 535-550 .
    4. 杨旺旺,王振林,苏静,胡旋,黄玉越,赖锦,王贵文. 玛湖凹陷风城组页岩油赋存空间特征及可动性影响因素. 新疆石油地质. 2025(02): 192-200 .
    5. 赵军,于春勇,马建英,周可佳,王昌丽,孟立娜. 歧口凹陷歧北次凹沙三段页岩油富集因素分析. 录井工程. 2025(01): 123-129 .
    6. 江程舟,王贵文,宋连腾,黄立良,王松,张益粼,黄玉越,范旭强. 定量荧光技术在页岩油储层研究中的应用——以准噶尔盆地玛湖凹陷二叠系风城组为例. 石油实验地质. 2025(03): 634-644 . 本站查看
    7. 周新平,石羽亮,赵国玺,刘江艳,廖永乐,陈俊霖,郭睿良,李树同. 两种模拟实验条件下的黑色页岩中滞留烃含量及特征与对比分析——以鄂尔多斯盆地延长组长7_3黑色页岩为例. 天然气地球科学. 2025(05): 899-915 .
    8. 李长志,郭佩,许景红,钟凯,文华国. 碱湖页岩酸碱性差异对页岩成岩演化及储集层的影响. 石油勘探与开发. 2024(01): 88-101 .
    9. 胡德胜,游君君,孙文钊,白楠,周刚. 涠西南凹陷流沙港组页岩油赋存特征及可动性评价. 断块油气田. 2024(01): 26-33 .
    10. 李俊乾,宋兆京,王民,张鹏飞,蔡建超. 页岩基质孔隙油微观赋存及可动性定量表征——以东营凹陷沙河街组为例. 石油科学通报. 2024(01): 1-20 .
    11. LI Changzhi,GUO Pei,XU Jinghong,ZHONG Kai,WEN Huaguo. Influences of different alkaline and acidic diagenetic environments on diagenetic evolution and reservoir quality of alkaline lake shales. Petroleum Exploration and Development. 2024(01): 97-113 .
    12. 王蓓,胡艺潇,周伟,周浩,寇根,刘赛,许宁,祝鹏. 玛西斜坡百口泉组致密砂砾岩储层速敏特征及主控因素. 中国石油大学学报(自然科学版). 2024(04): 141-148 .
    13. 郭鹏超,崔向东,董晓东,李金有,韩洪斗,张文伟,刘玉婷,徐玲玲. 陆东凹陷交力格洼陷九佛堂组页岩油赋存状态及孔径下限表征. 东北石油大学学报. 2024(03): 14-22+6 .
    14. 白玉彬,李梦瑶,朱涛,赵靖舟,任海姣,吴伟涛,吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价. 岩性油气藏. 2024(06): 110-121 .
    15. 张洪,冯有良,刘畅,杨智,伍坤宇,龙国徽,姚健欢,孟博文,邢浩婷,蒋文琦,王小妮,魏琪钊. 柴达木盆地干柴沟地区古近系下干柴沟组上段页岩层系优势岩相及其控储因素. 石油与天然气地质. 2024(05): 1305-1320 .
    16. 王伟,王振林,刘财广,郑孟林,张融,郑国庆,余佩蓉. 页岩油甜点评价关键技术及甜点类型划分:以玛湖凹陷二叠系风城组为例. 地球科学. 2023(01): 223-234 .
    17. 康淑娟,仰云峰,王华建,江文滨,何坤,刘冉冉. 松辽盆地中央坳陷区三肇凹陷上白垩统青山口组一段页岩含油性特征. 石油实验地质. 2023(01): 89-98 . 本站查看
    18. 张关龙,王越. 准噶尔盆地早二叠世构造-沉积格局及石油地质意义. 油气地质与采收率. 2023(01): 35-48 .
    19. 齐媛,韩东威,杜引鱼,周伟军. 玛湖凹陷三工河组油层低阻成因. 新疆石油地质. 2023(02): 151-160 .
    20. 卞保力,刘海磊,蒋中发,王学勇,丁修建. 玛南斜坡风城组油气成藏条件及主控因素. 西南石油大学学报(自然科学版). 2023(04): 72-84 .
    21. 张奎华,孙中良,张关龙,宋振响,于洪洲,周健,曹婷婷,宋梅远,王斌,李志明. 准噶尔盆地哈山地区下二叠统风城组泥页岩优势岩相与页岩油富集模式. 石油实验地质. 2023(04): 593-605 . 本站查看
    22. 李振明,熊伟,王斌,宋振响,宋梅远,孙中良,于洪洲,周健,吴小奇. 准噶尔盆地哈山地区二叠系风城组细粒沉积特征与演化模式. 石油实验地质. 2023(04): 693-704 . 本站查看
    23. 赵永强,宋振响,王斌,邱岐,孙中良,吴小奇. 准噶尔盆地油气资源潜力与中国石化常规—非常规油气一体化勘探策略. 石油实验地质. 2023(05): 872-881 . 本站查看
    24. 朱如凯,张婧雅,李梦莹,蔡毅,吴松涛,刘畅,张素荣,康缘. 陆相页岩油富集基础研究进展与关键问题. 地质学报. 2023(09): 2874-2895 .
    25. 倪敏婕,祝贺暄,何文军,杨森,邹阳,张元元. 准噶尔盆地玛湖凹陷风城组沉积环境与沉积模式分析. 现代地质. 2023(05): 1194-1207 .
    26. 郭旭升,马晓潇,黎茂稳,钱门辉,胡宗全. 陆相页岩油富集机理探讨. 石油与天然气地质. 2023(06): 1333-1349 .
    27. 唐勇,宋永,何文军,赵龙,杨海波,赵长永,郑孟林,孙帅,费李莹. 准噶尔叠合盆地复式油气成藏规律. 石油与天然气地质. 2022(01): 132-148 .
    28. 刘金,王剑,张宝真,曹剑,尚玲,张晓刚,王桂君. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组微-纳米孔隙页岩油原位赋存特征. 石油实验地质. 2022(02): 270-278 . 本站查看
    29. 李鹏,熊健,晏奇,朱政文,刘向君,吴俊,王振林,张磊. 准噶尔盆地玛湖凹陷二叠系风城组岩性对岩石力学特性的影响. 石油实验地质. 2022(04): 569-578 . 本站查看
    30. 吕焕泽,邹妞妞,蔡宁宁,黄永志,宁诗坦,朱彪. 玛湖凹陷北斜坡百口泉组碳酸盐胶结物形成机理及其地质意义. 新疆石油地质. 2022(05): 554-562 .
    31. 余琪祥,程建. 中国石化准噶尔盆地油气勘探成果回顾. 西安石油大学学报(社会科学版). 2022(05): 65-71 .
    32. 金之钧,梁新平,王小军,朱如凯,张元元,刘国平,高嘉洪. 玛湖凹陷风城组页岩油富集机制与甜点段优选. 新疆石油地质. 2022(06): 631-639 .
    33. 何海清,唐勇,邹志文,郭华军,徐洋,李亚哲. 准噶尔盆地中央坳陷西部风城组岩相古地理及油气勘探. 新疆石油地质. 2022(06): 640-653 .
    34. 钱门辉,王绪龙,黎茂稳,李志明,冷筠莹,孙中良. 玛页1井风城组页岩含油性与烃类赋存状态. 新疆石油地质. 2022(06): 693-703 .
    35. 刘财广,季瑞雪,王伟,张融. 玛湖凹陷风城组页岩油产量影响因素及甜点评价. 新疆石油地质. 2022(06): 733-742 .
    36. 师天明,张华,肖继南,阿木提·阿丽亚,刘锋,唐鹏,朱莉叶,谢媛,彭辉平. 新疆准噶尔盆地玛湖凹陷玛页1井宾夕法尼亚亚系至乌拉尔统风城组孢粉地层学研究. 古生物学报. 2022(04): 615-627 .

    Other cited types(15)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (1143) PDF downloads(150) Cited by(51)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return