HU Anping, SHEN Anjiang, CHEN Yana, ZHANG Jianyong, LIANG Feng, WANG Yongsheng. Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(Δ47)[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 896-905. doi: 10.11781/sysydz202105896
Citation: HU Anping, SHEN Anjiang, CHEN Yana, ZHANG Jianyong, LIANG Feng, WANG Yongsheng. Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(Δ47)[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 896-905. doi: 10.11781/sysydz202105896

Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(Δ47)

doi: 10.11781/sysydz202105896
  • Received Date: 2021-08-03
  • Rev Recd Date: 2021-09-04
  • Publish Date: 2021-09-28
  • Reliable evolution curve of tectonic-burial history is essential for the research of the source rock evolution, reservoir formation and hydrocarbon accumulation of target strata of basin. Previous publications reported the tectonic-burial evolution history curves established depending on regional geological setting, formation (denuded) thickness, and tectonic movements, which were uncertain due to the difference in such geological understandings. For the ancient marine carbonates in China, which have experienced multiple tectonic movement reformation, it is more difficult to reconstruct tectonic-burial evolution history. In this paper, based on the identification of carbonate cements and the establishment of diagenetic sequence, through coupling carbonate laser ablation U-Pb dating and clumped isotope (Δ47) thermometer, two understandings were proposed: (1) The tectonic-burial curves of the Sinian Dengying Formation in the Sichuan Basin were established under the constraints of absolute age and temperature, which avoided the problems of uncertainty of tectonic-burial history curves in previous studies; (2) The new tectonic-burial history curve provided critical reference for study on the source rock evolution, reservoir origin and hydrocarbon accumulation of the Sinian Dengying Formation of the Sichuan Basin, revealing three stages of hydrocarbon accumulation in the Dengying gas reservoir including Silurian, Permian and Yanshanian-Himalayan periods. The proposed method of reconstructing tectonic-burial evolution curve is not only suitable for the ancient marine carbonates which experienced multiple tectonic movement reformation, but is also promising for the study of source rock evolution, reservoir origin and hydrocarbon accumulation.

     

  • [1]
    何丽娟. 沉积盆地构造热演化模拟的研究进展[J]. 地球科学进展, 2000, 15(6): 661-665. doi: 10.3321/j.issn:1001-8166.2000.06.007

    HE Lijuan. Advance in tectono-thermal modelling of sedimentary basins[J]. Advances in Earth Science, 2000, 15(6): 661-665. doi: 10.3321/j.issn:1001-8166.2000.06.007
    [2]
    邱楠生. 沉积盆地热历史恢复方法及其在油气勘探中的应用[J]. 海相油气地质, 2005, 10(2): 45-51. doi: 10.3969/j.issn.1672-9854.2005.02.007

    QIU Nansheng. Methods of thermal history reconstruction of sedimentary basins and their application in oil and gas exploration[J]. Marine Origin Petroleum Geology, 2005, 10(2): 45-51. doi: 10.3969/j.issn.1672-9854.2005.02.007
    [3]
    朱传庆, 徐明, 单竞男, 等. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量[J]. 中国地质, 2009, 36(6): 1268-1277. doi: 10.3969/j.issn.1000-3657.2009.06.008

    ZHU Chuanqing, XU Ming, SHAN Jingnan, et al. Quantifying the denudations of major tectonic events in Sichuan Basin: constrained by the paleothermal records[J]. Geology in China, 2009, 36(6): 1268-1277. doi: 10.3969/j.issn.1000-3657.2009.06.008
    [4]
    朱传庆, 邱楠生, 曹环宇, 等. 四川盆地东部构造-热演化: 来自镜质体反射率和磷灰石裂变径迹的约束[J]. 地学前缘, 2017, 24(3): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703011.htm

    ZHU Chuanqing, QIU Nansheng, CAO Huanyu, et al. Tectono-thermal evolution of the eastern Sichuan Basin: constraints from the vitrinite reflectance and apatite fission track data[J]. Earth Science Frontiers, 2017, 24(3): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703011.htm
    [5]
    XU Qiuchen, QIU Nansheng, LIU Wen, et al. Thermal evolution and maturation of Sinian and Cambrian source rocks in the central Sichuan Basin, Southwest China[J]. Journal of Asian Earth Sciences, 2018, 164: 143-158. doi: 10.1016/j.jseaes.2018.06.015
    [6]
    邱楠生, 刘雯, 徐秋晨, 等. 深层-古老海相层系温压场与油气成藏[J]. 地球科学, 2018, 43(10): 3511-3525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810015.htm

    QIU Nansheng, LIU Wen, XU Qiuchen, et al. Temperature-pressure field and hydrocarbon accumulation in deep-ancient marine strata[J]. Earth Science, 2018, 43(10): 3511-3525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810015.htm
    [7]
    沈安江, 胡安平, 程婷, 等. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩-孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1062-1074.

    SHEN Anjiang, HU Anping, CHENG Ting, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1062-1074.
    [8]
    胡安平, 沈安江, 梁峰, 等. 激光铀铅同位素定年技术在塔里木盆地肖尔布拉克组储层孔隙演化研究中的应用[J]. 石油与天然气地质, 2020, 41(1): 37-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001005.htm

    HU Anping, SHEN Anjiang, LIANG Feng, et al. Application of laser in-situ U-Pb dating to reconstruct the reservoir porosity evolution in the Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 37-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001005.htm
    [9]
    GHOSH P, ADKINS J, AFFEK H, et al. 13C-18O bonds in carbonate minerals: a new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70(6): 1439-1456. doi: 10.1016/j.gca.2005.11.014
    [10]
    SHENTON B J, GROSSMAN E L, PASSEY B H, et al. Clumped isotope thermometry in deeply buried sedimentary carbonates: the effects of bond reordering and recrystallization[J]. GSA Bulletin, 2015, 127(7/8): 1036-1051.
    [11]
    魏国齐, 王志宏, 李剑, 等. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学, 2017, 28(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701001.htm

    WEI Guoqi, WANG Zhihong, LI Jian, et al. Characteristics of source rocks, resource potential and exploration direction of Sinian and Cambrian in Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701001.htm
    [12]
    罗冰, 罗文军, 王文之, 等. 四川盆地乐山-龙女寺古隆起震旦系气藏形成机制[J]. 天然气地球科学, 2015, 26(3): 444-455. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503007.htm

    LUO Bing, LUO Wenjun, WANG Wenzhi, et al. Formation mechanism of the Sinian natural gas reservoir in the Leshan-Longnvsi Paleo-Uplift, Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(3): 444-455. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503007.htm
    [13]
    杨跃明, 文龙, 罗冰, 等. 四川盆地乐山-龙女寺古隆起震旦系天然气成藏特征[J]. 石油勘探与开发, 2016, 43(2): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602004.htm

    YANG Yueming, WEN Long, LUO Bing, et al. Hydrocarbon accumulation of Sinian natural gas reservoirs, Leshan-Longnüsi paleohigh, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602004.htm
    [14]
    刘树根, 马永生, 蔡勋育, 等. 四川盆地震旦系-下古生界天然气成藏过程和特征[J]. 成都理工大学学报(自然科学版), 2009, 33(4): 345-354. doi: 10.3969/j.issn.1671-9727.2009.04.001

    LIU Shugen, MA Yongsheng, CAI Xunyu, et al. Characteristic and accumulation process of the natural gas from Sinian to Lower Paleozoic in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2009, 33(4): 345-354. doi: 10.3969/j.issn.1671-9727.2009.04.001
    [15]
    王国芝, 刘树根, 刘伟, 等. 川中高石梯构造灯影组油气成藏过程[J]. 成都理工大学学报(自然科学版), 2014, 41(6): 684-693. doi: 10.3969/j.issn.1671-9727.2014.06.03

    WANG Guozhi, LIU Shugen, LIU Wei, et al. Process of hydrocarbon accumulation of Sinian Dengying Formation in Gaoshiti Structure, Central Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 684-693. doi: 10.3969/j.issn.1671-9727.2014.06.03
    [16]
    汪泽成, 王铜山, 文龙, 等. 四川盆地安岳特大型气田基本地质特征与形成条件[J]. 中国海上油气, 2016, 28(2): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602005.htm

    WANG Zecheng, WANG Tongshan, WEN Long, et al. Basic geolo-gical characteristics and accumulation conditions of Anyue giant gas field, Sichuan Basin[J]. China Offshore Oil and Gas, 2016, 28(2): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602005.htm
    [17]
    孙玮, 刘树根, 韩克猷, 等. 四川盆地震旦系油气地质条件及勘探前景分析[J]. 石油实验地质, 2009, 31(4): 350-355. doi: 10.3969/j.issn.1001-6112.2009.04.007

    SUN Wei, LIU Shungen, HAN Keyou, et al. The petroleum geolo-gical condition and exploration prospect analysis in Sinian, Sichuan Basin[J]. Petroleum Geology & Experiment, 2009, 31(4): 350-355. doi: 10.3969/j.issn.1001-6112.2009.04.007
    [18]
    孙玮, 刘树根, 宋金民, 等. 叠合盆地古老深层碳酸盐岩油气成藏过程和特征: 以四川叠合盆地震旦系灯影组为例[J]. 成都理工大学学报(自然科学版), 2017, 44(3): 257-285. doi: 10.3969/j.issn.1671-9727.2017.03.01

    SUN Wei, LIU Shugen, SONG Jinmin, et al. The formation process and characteristics of ancient and deep carbonate petroleum reservoirs in superimposed basins: a case study of Sinian (Ediacaran) Dengying Formation in the Sichuan superimposed basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(3): 257-285. doi: 10.3969/j.issn.1671-9727.2017.03.01
    [19]
    李英强, 何登发, 文竹. 四川盆地及邻区晚震旦世古地理与构造-沉积环境演化[J]. 古地理学报, 2013, 15(2): 231-245. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201302009.htm

    LI Yingqiang, HE Dengfa, WEN Zhu. Palaeogeography and tectonic-depositional environment evolution of the Late Sinian in Sichuan Basin and adjacent areas[J]. Journal of Palaeogeography, 2013, 15(2): 231-245. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201302009.htm
    [20]
    邓胜徽, 樊茹, 李鑫, 等. 四川盆地及周缘地区震旦(埃迪卡拉)系划分与对比[J]. 地层学杂志, 2015, 39(3): 239-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201503001.htm

    DENG Shenghui, FAN Ru, Li Xin, et al. Subdivision and correlation of the Sinian (Ediacaran) system in the Sichuan Basin and its adjacent area[J]. Journal of Stratigraphy, 2015, 39(3): 239-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201503001.htm
    [21]
    陈娅娜, 沈安江, 潘立银, 等. 微生物白云岩储集层特征成因和分布: 以四川盆地震旦系灯影组四段为例[J]. 石油勘探与开发, 2017, 44(5): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705006.htm

    CHEN Yana, SHEN Anjiang, PAN Liyin, et al. Features, origin and distribution of microbial dolomite reservoirs: a case study of 4th member of Sinian Dengying Formation in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(5): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201705006.htm
    [22]
    沈安江, 陈娅娜, 张建勇, 等. 中国古老小克拉通台内裂陷特征及石油地质意义[J]. 石油与天然气地质, 2020, 41(1): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001003.htm

    SHEN Anjiang, CHEN Yana, ZHANG Jianyong, et al. Characteristics of intra-platform rift in ancient small-scalecratonic platform of China and its implications for hydrocarbon exploration[J]. Oil & Gas Geology, 2020, 41(1): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001003.htm
    [23]
    刘树根, 王一刚, 孙玮, 等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报(自然科学版), 2016, 43(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201601001.htm

    LIU Shugen, WANG Yigang, SUN Wei, et al. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2016, 43(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201601001.htm
    [24]
    李伟, 易海永, 胡望水, 等. 四川盆地加里东古隆起构造演化与油气聚集的关系[J]. 天然气工业, 2014, 34(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403004.htm

    LI Wei, YI Haiyong, HU Wangshui, et al. Tectonic evolution of Caledonian paleohigh in the Sichuan Basin and its relationship with hydrocarbon accumulation[J]. Natural Gas Industry, 2014, 34(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403004.htm
    [25]
    魏国齐, 杨威, 杜金虎, 等. 四川盆地震旦纪-早寒武世克拉通内裂陷地质特征[J]. 天然气工业, 2015, 35(1): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501004.htm

    WEI Guoqi, YANG Wei, Du Jinhu, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501004.htm
    [26]
    RASBURY E T, COLE J M. Directly dating geologic events: U-Pb dating of carbonates[J]. Reviews of Geophysics, 2009, 47(3): RG3001.
    [27]
    SMITH P E, FARQUHAR R M, HANCOCK R G. Direct radiometric age determination of carbonate diagenesis using U-Pb in secondary calcite[J]. Earth and Planetary Science Letters, 1991, 105(4): 474-491.
    [28]
    SCHOENE B. 4.10-U-Th-Pb geochronology[M]//HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier Ltd., 2014: 341-378.
    [29]
    MOORBATH S, TAYLOR P N, ORPEN J L, et al. First direct radiometric dating of Archaean stromatolitic limestone[J]. Nature, 1987, 326(6116): 865-867.
    [30]
    SMITH P E, FARQUHAR R M. Direct dating of Phanerozoic sediments by the 238U-206Pb method[J]. Nature, 1989, 341(6242): 518-521.
    [31]
    DEWOLF C P, HALLIDAY A N. U-Pb dating of a remagnetized Paleozoic limestone[J]. Geophysical Research Letters, 1991, 18(8): 1445-1448.
    [32]
    GODEAU N, DESCHAMPS P, GUIHOU A, et al. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: case of the Urgonian limestone, France[J]. Geology, 2018, 46(3): 247-250.
    [33]
    VAKS A, WOODHEAD J, BAR-MATTHEWS M, et al. Pliocene-Pleistocene climate of the northern margin of Saharan-Arabian Desert recorded in speleothems from the Negev Desert, Israel[J]. Earth and Planetary Science Letters, 2013, 368: 88-100.
    [34]
    ISRAELSON C, HALLIDAY A N, BUCHARDT B. U-Pb dating of calcite concretions from Cambrian black shales and the Phanerozoic time scale[J]. Earth and Planetary Science Letters, 1996, 141(1/4): 153-159.
    [35]
    COOGAN L A, PARRISH R R, ROBERTS N M W. Early hydrothermal carbon uptake by the upper oceanic crust: insight from in situ U-Pb dating[J]. Geology, 2016, 44(2): 147-150.
    [36]
    ROBERTS N M W, WALKER R J. U-Pb geochronology of calcite-mineralized faults: absolute timing of rift-related fault events on the northeast Atlantic margin[J]. Geology, 2016, 44(7): 531-534.
    [37]
    PISAPIA C, DESCHAMPS P, BATTANI A, et al. U/Pb dating of geodic calcite: new insights on Western Europe major tectonic events and associated diagenetic fluids[J]. Journal of the Geological Society, 2018, 175(1): 60-70.
    [38]
    DENNISTON R F, ASMEROM Y, POLYAK V Y, et al. Caribbean chronostratigraphy refined with U-Pb dating of a Miocene coral[J]. Geology, 2008, 36(2): 151-154.
    [39]
    BECKER M L, RASBURY E T, MEYERS W J, et al. U-Pb calcite age of the Late Permian Castile Formation, Delaware Basin: a constraint on the age of the Permian-Triassic boundary (?)[J]. Earth and Planetary Science Letters, 2002, 203(2): 681-689.
    [40]
    LI Q, PARRISH R R, HORSTWOOD M S A, et al. U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology, 2014, 376: 76-83.
    [41]
    MURRAY S T, ARIENZO M M, SWART P K. Determining the Δ47 acid fractionation in dolomites[J]. Geochimica et Cosmochimica Acta, 2016, 174: 42-53.
    [42]
    HUNTINGTON K W, EILER J M, AFFEK H P, et al. Methods and limitations of 'clumped' CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry[J]. Journal of Mass Spectrometry, 2009, 44(9): 1318-1329.
    [43]
    DENNIS K J, AFFEK H P, PASSEY B H, et al. Defining an absolute reference frame for 'clumped' isotope studies of CO2[J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7117-7131.
    [44]
    SWART P K, MURRAY S T, STAUDIGEL P T, et al. Oxygen isotopic exchange between CO2 and phosphoric acid: implications for the measurement of clumped isotopes in carbonates[J]. Geoche-mistry, Geophysics, Geosystems, 2019, 20(7): 3730-3750.
    [45]
    TERA F, WASSERBURG G J. U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions[J]. Earth and Planetary Science Letters, 1972, 17(1): 36-51.
    [46]
    刘绍文, 李香兰, 郝春艳, 等. 塔里木盆地的热流、深部温度和热结构[J]. 地学前缘, 2017, 24(3): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703005.htm

    LIU Shaowen, LI Xianglan, HAO Chunyan, et al. Heat flow, deep formation temperature and thermal structure of the Tarim Basin, Northwest China[J]. Earth Science Frontiers, 2017, 24(3): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703005.htm
    [47]
    魏国齐, 杨威, 谢武仁, 等. 四川盆地震旦系-寒武系天然气成藏模式与勘探领域[J]. 石油学报, 2018, 39(12): 1317-1327. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201812001.htm

    WEI Guoqi, YANG Wei, XIE Wuren, et al. Accumulation modes and exploration domains of Sinian-Cambrian natural gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2018, 39(12): 1317-1327. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201812001.htm
    [48]
    沈安江, 赵文智, 胡安平, 等. 碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用[J]. 石油勘探与开发, 2021, 48(3): 476-487. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103005.htm

    SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(3): 476-487. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103005.htm
  • Relative Articles

    [1]NIU Siqi, LIU Guangdi, WANG Yunlong, SONG Zezhang, ZHU Lianqiang, ZHAO Wenzhi, TIAN Xingwang, YANG Dailin, LI Yishu. Occurrence characteristics and genesis mechanism of pyrobitumen in Sinian Dengying to Cambrian Longwangmiao reservoirs in central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 1039-1049. doi: 10.11781/sysydz2024051039
    [2]QIU Nansheng, LIU Xin, XIONG Yujie, LIU Yuchen, XU Qiuchen, CHANG Qing. Progress in the study of carbonate clumped isotope in the thermal history of marine basins[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 891-903. doi: 10.11781/sysydz202305891
    [3]LI Longlong, LUO Kaiping, LIU Xu, ZHANG Changjiang, CAO Qinggu, LU Yongde, PENG Jinning. Controlling effect of Late Paleozoic tectonic and sedimentary differentiation on multi-type gas reservoirs in Permian, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(1): 60-71. doi: 10.11781/sysydz202301060
    [4]SHI Shuyuan, HU Suyun, WANG Zecheng, WEN Long, XU Zuxin, LIU Wei, XIE Wuren, JIANG Hua, BIAN Congsheng, LIU Jingjiang, LU Bin, SU Wang, FENG Qingfu, ZHOU Gang, HAO Tao. Characteristics and exploration prospect of dolograinstone beach reservoir in Xixiangchi Formation, Cambrian, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 433-447. doi: 10.11781/sysydz202203433
    [5]ZHANG Zhuang, SU Chengpeng, SONG Xiaobo, SHI Guoshan, WANG Renfu, LI Suhua, DONG Xia, HU Yongliang. Petroleum geological conditions and exploration potential of the Permian Qixia Formation in the middle segment of Western Depression, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(6): 959-970. doi: 10.11781/sysydz202206959
    [6]JIANG Zhili, ZHU Xiang. Hydrocarbon accumulation characteristics and main controlling factors for Permian Maokou Formation in Yuanba area, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 639-646. doi: 10.11781/sysydz202204639
    [7]SUN Ke, XU Ke, CHEN Qinghua. Characterization of the length of structural fractures in low permeability reservoirs and its application: a case study of Longwangmiao Formation in Moxi-Gaoshiti areas, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(1): 160-169. doi: 10.11781/sysydz202201160
    [8]SHI Chunhua, SHAN Shujiao, HAO Jing, LUO Bing, CAO Jian. Inorganic geochemical characteristics and evaluation of Sinian-Cambrian post-mature source rocks in Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 505-514. doi: 10.11781/sysydz202203505
    [9]MENG Xianwu, LIU Yong, SHI Guoshan, CHEN Lan, ZHU Lan, CAI Zuohua. The structural evolution of the middle section of the West Sichuan Depression in the Sichuan Basin controlled the hydrocarbon accumulation in the Middle Triassic Leikoupo Formation[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(6): 986-995. doi: 10.11781/sysydz202106986
    [10]MA Zhongliang, SHEN Baojian, PAN Anyang, BORJIGIN Tenger, NING Chuanxiang, ZHENG Lunju. Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi formations, Sichuan Basin: implication from pyrolysis experiments[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428
    [11]ZHU Lianqiang, YUAN Haifeng, LIN Xuemei, ZENG Wei, XU Yunqiang. Diagenesis and hydrocarbon accumulation of the Cambrian Longwangmiao Formation in Anyue, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(6): 812-820. doi: 10.11781/sysydz201906812
    [12]LI Haohan, CHEN Ke, BAO Shujing, ZHANG Yanlin, SONG Teng, WANG Peng. Evaluation of shale gas resources of the Sinian Doushantuo Formation in the southern Huangling anticline, western Hubei Province[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(1): 31-37. doi: 10.11781/sysydz201901031
    [13]GUO Xusheng, HU Dongfeng, DUAN Jinbao, WU Hao, LI Bisong. Rock features and sedimentary environment of the fourth member of Dengying Formation in Hujiaba section of Ningqiang, northern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2018, 40(6): 749-756. doi: 10.11781/sysydz201806749
    [14]Lin Yi, Chen Cong, Shan Shujiao, Zeng Yiyang, Liu Xin, Chen Youlian. Reservoir characteristics and main controlling factors of the Cambrian Xixiangchi Formation in the Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2017, 39(5): 610-617. doi: 10.11781/sysydz201705610
    [15]Liu Dan, Li Jian, Xie Zengye, Guo Jianying, Hao Aisheng. Origin and significance of Sinian original and coexist bitumen of central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2014, 36(2): 218-223. doi: 10.11781/sysydz201402218
    [16]Huang Wenming, Liu Shugen, Zhang Changjun, Wang Guozhi, Xu Guosheng, Yong Ziquan, Ma Wenxin. THE FORMATION MECHANISMS OF CAVITY AND CHARACTERISTICS OF CEMENTS AND FILLINGS OF SINIAN SYSTEM IN SICHUAN BASIN[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2009, 31(5): 449-454. doi: 10.11781/sysydz200905449
    [17]Sun Wei, Liu Shugen, Han Keyou, Luo Zhili, Wang Guozhi, Xu Guosheng. THE PETROLEUM GEOLOGICAL CONDITION AND EXPLORATION PROSPECT ANALYSIS IN SINIAN,SICHUAN BASIN[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2009, 31(4): 350-355. doi: 10.11781/sysydz200904350
    [18]Cui Huiying, Zhang Li, Wei Guoqi, Hu Guoyi, Liang Feng, Xiang Jie. CHARACTERISTICS OF THE SINIAN RESERVOIR BITUMEN IN WEIYUAN-ZIYANG AREAS OF THE SICHUAN BASIN AND ITS SIGNIFICANCE[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2008, 30(5): 489-493. doi: 10.11781/sysydz200805489
    [19]DAI Jin-xing, XIA Xin-yu, WEI Yan-zhao, TAO Shi-zhen. CARBON ISOTOPE CHARACTERISTICS OF NATURAL GAS IN THE SICHUAN BASIN, CHINA[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2001, 23(2): 115-121. doi: 10.11781/sysydz200102115
    [20]GUO Jian-hun, WANG Fang-ping, LIU Gui, WANG Zheng-yong, GAO Zhen-zhong. SHATTERED BRECCIA OF THE UPPER SINIAN DENGYING FORMATION IN DAYONG, WEST HUNAN PROVINCE[J]. PETROLEUM GEOLOGY & EXPERIMENT, 1999, 21(3): 219-224. doi: 10.11781/sysydz199903219
  • Cited by

    Periodical cited type(16)

    1. 甯濛,罗靖茹,陈家乐,钟怡江,文华国. 前寒武系海相白云石胶结物研究现状及展望. 古地理学报. 2025(01): 85-108 .
    2. 聂晶,周刚,张亚,武鲁亚,孙奕婷,张宝收,马奎,豆霜,乔艳萍,袁海锋. 川中古隆起北斜坡灯影组二段储层成岩流体演化及成储效应. 地质学报. 2025(03): 879-896 .
    3. 丁文龙,王垚,王生晖,刘霆锋,张子游,勾通,张梦阳,贺湘. 页岩储层非构造裂缝研究进展与思考. 地学前缘. 2024(01): 297-314 .
    4. 邹鑫洁,肖晖,成良丙. 烃类包裹体荧光光谱技术划分油气成藏期次——以川中古隆起地区震旦系灯影组为例. 非常规油气. 2024(03): 49-57 .
    5. 周进高,徐哲航,黄世伟,李文正,段军茂,朱永进,郑剑锋,吴东旭,常少英. 碳酸盐岩沉积储层研究前沿与未来发展方向. 石油与天然气地质. 2024(04): 929-953 .
    6. 牛思琪,柳广弟,王云龙,宋泽章,朱联强,赵文智,田兴旺,杨岱林,李亿殊. 川中地区震旦系灯影组—寒武系龙王庙组储层焦沥青赋存特征与成因机制. 石油实验地质. 2024(05): 1039-1049 . 本站查看
    7. 丁文龙 ,王垚 ,张子游 ,刘天顺 ,程晓云 ,勾通 ,王生晖 ,刘霆锋 . 页岩储层构造裂缝活动期次及开启性研究进展与展望. 地学前缘. 2024(05): 1-16 .
    8. 李茜,胡安平,沈安江,张建勇,乔占峰,段军茂. 白云岩的成因、储集空间及实验技术研究新进展. 石油与天然气地质. 2024(05): 1456-1482 .
    9. 李峰峰,叶禹,余义常,郭睿. 碳酸盐岩成岩作用研究进展. 地质科技通报. 2023(01): 170-190 .
    10. 程开虎,肖晖. 基于U—Pb定年和团簇同位素测定的古老碳酸盐岩地层热演化史恢复及成藏过程重建. 天然气地球科学. 2023(01): 111-121 .
    11. 陈勇,韩雨航,鲁雪松,宋一帆,马行陟,范俊佳. 深层碳酸盐储层再平衡流体包裹体特征及其原始捕获条件确定. 地球科学. 2023(02): 413-428 .
    12. 付小东,张本健,汪泽成,雷明,张建勇,管树巍,李文正,钟原,谷明峰,陈涛. 四川盆地中西部走滑断裂及其对油气成藏控制作用. 地球科学. 2023(06): 2221-2237 .
    13. 邱楠生,刘鑫,熊昱杰,刘雨晨,徐秋晨,常青. 碳酸盐团簇同位素在海相盆地热史研究中的进展. 石油实验地质. 2023(05): 891-903 . 本站查看
    14. 沈安江,胡安平,梁峰,佘敏. 碳酸盐岩储层模拟与地球化学实验技术进展及应用. 中国石油勘探. 2022(04): 16-29 .
    15. 苏中堂,佘伟,廖慧鸿,胡孙龙,刘国庆,马慧. 白云岩储层成因研究进展及发展趋势. 天然气地球科学. 2022(07): 1175-1188 .
    16. 任战利,崔军平,祁凯,杨鹏,刘新社,张才利,杨桂林,高彦芳,张莹,邢光远. 叠合盆地深层、超深层热演化史恢复理论及方法研究新进展. 西北大学学报(自然科学版). 2022(06): 910-929 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050204060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.2 %FULLTEXT: 23.2 %META: 69.3 %META: 69.3 %PDF: 7.5 %PDF: 7.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.5 %其他: 6.5 %其他: 0.6 %其他: 0.6 %Bass Hill: 0.2 %Bass Hill: 0.2 %Central District: 0.1 %Central District: 0.1 %China: 1.1 %China: 1.1 %Germany: 0.1 %Germany: 0.1 %India: 0.1 %India: 0.1 %Malvern: 0.2 %Malvern: 0.2 %Turkey: 0.1 %Turkey: 0.1 %United States: 0.6 %United States: 0.6 %Wan Chai: 0.2 %Wan Chai: 0.2 %Westbury: 0.2 %Westbury: 0.2 %[]: 0.2 %[]: 0.2 %三门峡: 0.1 %三门峡: 0.1 %上海: 0.1 %上海: 0.1 %东营: 0.1 %东营: 0.1 %临汾: 0.1 %临汾: 0.1 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.5 %乌鲁木齐: 0.5 %兰州: 0.1 %兰州: 0.1 %内江: 0.1 %内江: 0.1 %北京: 6.1 %北京: 6.1 %南京: 0.4 %南京: 0.4 %南充: 0.5 %南充: 0.5 %南宁: 0.2 %南宁: 0.2 %台州: 1.1 %台州: 1.1 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.3 %哥伦布: 0.3 %喀什地区: 0.1 %喀什地区: 0.1 %城南: 0.1 %城南: 0.1 %大同: 0.2 %大同: 0.2 %大庆: 0.1 %大庆: 0.1 %大急流城: 0.2 %大急流城: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.3 %天津: 0.3 %太原: 0.1 %太原: 0.1 %安康: 0.2 %安康: 0.2 %宣城: 0.7 %宣城: 0.7 %密蘇里城: 0.2 %密蘇里城: 0.2 %布里斯班: 0.1 %布里斯班: 0.1 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广元: 0.1 %广元: 0.1 %广州: 1.1 %广州: 1.1 %庆阳: 0.1 %庆阳: 0.1 %弗吉尼亚州: 0.1 %弗吉尼亚州: 0.1 %张家口: 3.4 %张家口: 3.4 %徐州: 0.1 %徐州: 0.1 %怒江: 0.1 %怒江: 0.1 %悉尼: 0.2 %悉尼: 0.2 %成都: 1.1 %成都: 1.1 %扬州: 0.1 %扬州: 0.1 %无锡: 0.5 %无锡: 0.5 %昆明: 0.7 %昆明: 0.7 %晋城: 0.1 %晋城: 0.1 %普赖恩维尔: 0.2 %普赖恩维尔: 0.2 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.5 %杭州: 1.5 %武汉: 1.3 %武汉: 1.3 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %法尔肯施泰因: 0.1 %法尔肯施泰因: 0.1 %泰安: 0.1 %泰安: 0.1 %洛杉矶: 0.2 %洛杉矶: 0.2 %济南: 0.3 %济南: 0.3 %温州: 0.1 %温州: 0.1 %湖州: 0.7 %湖州: 0.7 %漯河: 0.9 %漯河: 0.9 %漳州: 0.2 %漳州: 0.2 %珠海: 0.1 %珠海: 0.1 %盘锦: 0.1 %盘锦: 0.1 %石家庄: 0.4 %石家庄: 0.4 %红河: 0.1 %红河: 0.1 %绵阳: 0.1 %绵阳: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 33.6 %芒廷维尤: 33.6 %芝加哥: 0.7 %芝加哥: 0.7 %荆州: 0.1 %荆州: 0.1 %荆门: 0.1 %荆门: 0.1 %莫斯科: 0.4 %莫斯科: 0.4 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.6 %衢州: 0.6 %西宁: 20.6 %西宁: 20.6 %西安: 0.5 %西安: 0.5 %贵阳: 0.3 %贵阳: 0.3 %达州: 1.0 %达州: 1.0 %运城: 1.5 %运城: 1.5 %通辽: 0.2 %通辽: 0.2 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.3 %重庆: 0.3 %金华: 0.2 %金华: 0.2 %长春: 0.3 %长春: 0.3 %长沙: 0.6 %长沙: 0.6 %长治: 0.1 %长治: 0.1 %阿什本: 0.3 %阿什本: 0.3 %青岛: 1.1 %青岛: 1.1 %香港: 0.1 %香港: 0.1 %其他其他Bass HillCentral DistrictChinaGermanyIndiaMalvernTurkeyUnited StatesWan ChaiWestbury[]三门峡上海东营临汾丽水乌鲁木齐兰州内江北京南京南充南宁台州合肥呼和浩特哥伦布喀什地区城南大同大庆大急流城大连天津太原安康宣城密蘇里城布里斯班常州平顶山广元广州庆阳弗吉尼亚州张家口徐州怒江悉尼成都扬州无锡昆明晋城普赖恩维尔朝阳杭州武汉沈阳沧州法尔肯施泰因泰安洛杉矶济南温州湖州漯河漳州珠海盘锦石家庄红河绵阳美国伊利诺斯芝加哥芒廷维尤芝加哥荆州荆门莫斯科衡阳衢州西宁西安贵阳达州运城通辽遵义邯郸郑州重庆金华长春长沙长治阿什本青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (1033) PDF downloads(112) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return