Wei Xiangfeng, Li Yuping, Wei Zhihong, Liu Ruobing, Yu Guangchun, Wang Qingbo. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147
Citation: ZHANG Qingfeng, LI Ziling, ZHANG Jikun, HAO Shuai, SUN Xiaoguang, SHANG Yanjie, ZUO Yun. Brittleness evaluation of main coal seams in Permian Taiyuan-Shanxi formations, Baode block, Ordos Basin: based on a convolutional neural network method[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 204-212. doi: 10.11781/sysydz2025010204

Brittleness evaluation of main coal seams in Permian Taiyuan-Shanxi formations, Baode block, Ordos Basin: based on a convolutional neural network method

doi: 10.11781/sysydz2025010204
  • Received Date: 2024-04-02
  • Rev Recd Date: 2024-11-11
  • Publish Date: 2025-01-28
  • The coal seams of the Permian Taiyuan-Shanxi formations in the Baode block of the northeastern margin of the Ordos Basin have abundant coalbed methane resources. However, the productivity varies greatly among wells, mainly attributed to the strong heterogeneity caused by regional differences in reservoir brittleness. Rock mechanical parameter method is commonly used to evaluate reservoir brittleness. Studying rock mechanical parameters and brittleness can provide an important basis for fracturing modification. However, current methods mostly rely on empirical formulas, leading to limited evaluation accuracy. In this study, a convolutional neural network (CNN) was utilized to construct a conversion model between experimentally obtained elastic modulus, Poisson's ratio, and multi-logging curves. Based on this method, rock mechanical profiles were further established, enabling quantitative evaluation of brittleness. The results indicated that CNN-based predictions of rock mechanical parameters had good applicability for coal-bearing layers. The brittleness indices the main coal seams, 4+5# and 8+9#, in the Baode block were generally low. The brittleness index of the 4+5# seam was slightly higher than that of the 8+9# seam. Both seams exhibited similar spatial distributions, with low brittleness values in the central and southeastern parts of the study area. Differences in mineral composition affected rock brittleness. Higher quartz content was linearly correlated with greater elastic modulus and brittleness index.

     

  • All authors declare no relevant conflict of interests.
    ZHANG Qingfeng and LI Ziling wrote the initial draft of the paper. HAO Shuai, SHANG Yanjie, and ZUO Yun completed the drawings. ZHANG Jikun and SUN Xiaoguang revised the paper. All authors have read the final version of the paper and consented to its submission.
  • [1]
    陈天, 易远元, 李甜甜, 等. 中国煤层气勘探开发现状及关键技术展望[J]. 现代化工, 2023, 43(9): 6-10.

    CHEN Tian, YI Yuanyuan, LI Tiantian, et al. Current situation of CBM exploration and development in China and prospects on key technologies[J]. Modern Chemical Industry, 2023, 43(9): 6-10.
    [2]
    刘大锰, 李俊乾. 我国煤层气分布赋存主控地质因素与富集模式[J]. 煤炭科学技术, 2014, 42(6): 19-24.

    LIU Dameng, LI Junqian. Main geological controls on distribution and occurrence and enrichment patterns of coalbed methane in China[J]. Coal Science and Technology, 2014, 42(6): 19-24.
    [3]
    吴国代, 桑树勋, 杨志刚, 等. 地应力影响煤层气勘探开发的研究现状与展望[J]. 中国煤炭地质, 2009, 21(4): 31-34. doi: 10.3969/j.issn.1674-1803.2009.04.007

    WU Guodai, SANG Shuxun, YANG Zhigang, et al. Current research status and prospect of geo-stress impact on CBM exploration and exploitation[J]. Coal Geology of China, 2009, 21(4): 31-34. doi: 10.3969/j.issn.1674-1803.2009.04.007
    [4]
    秦勇, 申建, 史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报, 2022, 47(1): 371-387.

    QIN Yong, SHEN Jian, SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society, 2022, 47(1): 371-387.
    [5]
    何建华, 李勇, 邓虎成, 等. 基于多元力学实验的深层页岩气储层脆性影响因素分析与定量评价[J]. 天然气地球科学, 2022, 33(7): 1102-1116.

    HE Jianhua, LI Yong, DENG Hucheng, et al. Quantitative evaluation and influencing factors analysis of the brittleness of deep shale reservoir based on multiple rock mechanics experiments[J]. Natural Gas Geoscience, 2022, 33(7): 1102-1116.
    [6]
    王濡岳, 胡宗全, 赖富强, 等. 川东北地区下侏罗统自流井组大安寨段陆相页岩脆性特征及其控制因素[J]. 石油与天然气地质, 2023, 44(2): 366-378.

    WANG Ruyue, HU Zongquan, LAI Fuqiang, et al. Brittleness features and controlling factors of continental shale from Da'anzhai Member of the Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(2): 366-378.
    [7]
    孔令运, 宋广朋, 蒋恕, 等. 深层页岩微观力学特征及控制机理: 以涪陵地区平桥区块JYA井深层页岩为例[J]. 石油实验地质, 2024, 46(4): 683-697. doi: 10.11781/sysydz202404683

    KONG Lingyun, SONG Guangpeng, JIANG Shu, et al. Micromechanical characteristics and controlling mechanism of deep shale: a case study of well JYA in Pingqiao block, Fuling area[J]. Petroleum Geology & Experiment, 2024, 46(4): 683-697. doi: 10.11781/sysydz202404683
    [8]
    徐珂, 鞠玮, 张辉, 等. 塔里木盆地库车坳陷白垩系巴什基奇克组致密砂岩力学性质影响因素及其变化规律[J]. 石油实验地质, 2024, 46(4): 823-832. doi: 10.11781/sysydz202404823

    XU Ke, JU Wei, ZHANG Hui, et al. Factors affecting the mechanical properties of tight sandstone and their patterns of variation in Cretaceous Bashijiqike Formation of Kuqa Depression in Tarim Basin[J]. Petroleum Geology & Experiment, 2024, 46(4): 823-832. doi: 10.11781/sysydz202404823
    [9]
    魏海峰. 非均质性页岩水力压裂裂缝扩展形态研究进展[J]. 油气地质与采收率, 2023, 30(4): 156-166.

    WEI Haifeng. Research progress on fracture propagation patterns of hydraulic fracturing in heterogeneous shale[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 156-166.
    [10]
    丁然, 张峰, 王勇, 等. 准中深层砂岩脆性及其对岩石破裂模式的影响规律[J]. 油气地质与采收率, 2024, 31(3): 54-62.

    DING Ran, ZHANG Feng, WANG Yong, et al. Brittleness of deep sandstone in central Junggar Basin and its influence on fracture modes of rocks[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(3): 54-62.
    [11]
    王芙蓉, 何生, 郑有恒, 等. 江汉盆地潜江凹陷潜江组盐间页岩油储层矿物组成与脆性特征研究[J]. 石油实验地质, 2016, 38(2): 211-218.

    WANG Furong, HE Sheng, ZHENG Youheng, et al. Mineral composition and brittleness characteristics of the inter-salt shale oil reservoirs in the Qianjiang Formation, Qianjiang Sag[J]. Petroleum Geology & Experiment, 2016, 38(2): 211-218.
    [12]
    LI Yuwei, LONG Min, ZUO Lihua, et al. Brittleness evaluation of coal based on statistical damage and energy evolution theory[J]. Journal of Petroleum Science and Engineering, 2019, 172: 753-763. doi: 10.1016/j.petrol.2018.08.069
    [13]
    REN Bo, WANG Shaohua, XUE Junhua, et al. Quantitative evaluation methods of brittle failure characteristics of coal: a case study of hard coal in China[J]. Geotechnical and Geological Engineering, 2019, 37(3): 1421-1434. doi: 10.1007/s10706-018-0696-3
    [14]
    孙彪, 刘小平, 舒红林, 等. 湖相泥页岩储层脆性评价及影响因素分析: 以苏北盆地海安凹陷曲塘次凹泥页岩为例[J]. 石油实验地质, 2021, 43(6): 1006-1014. https://xueshu.baidu.com/usercenter/paper/show?paperid=1w5f0jq0eq1b0tg0gt520ag0bc654091&site=xueshu_se&hitarticle=1

    SUN Biao, LIU Xiaoping, SHU Honglin, et al. Evaluation and influencing factors for brittleness of lacustrine shale reservoir: a case study of Qutang Sub-Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 1006-1014. https://xueshu.baidu.com/usercenter/paper/show?paperid=1w5f0jq0eq1b0tg0gt520ag0bc654091&site=xueshu_se&hitarticle=1
    [15]
    徐凤银, 张伟, 李子玲, 等. 鄂尔多斯盆地保德区块煤层气藏描述与提高采收率关键技术[J]. 天然气工业, 2023, 43(1): 96-112. doi: 10.3787/j.issn.1000-0976.2023.01.010

    XU Fengyin, ZHANG Wei, LI Ziling, et al. Coalbed methane reservoir description and enhanced recovery technologies in Baode block, Ordos Basin[J]. Natural Gas Industry, 2023, 43(1): 96-112. doi: 10.3787/j.issn.1000-0976.2023.01.010
    [16]
    孟文辉, 张文, 王博洋, 等. 保德区块煤粉产出特征及其影响要素剖析[J]. 油气藏评价与开发, 2023, 13(4): 441-450.

    MENG Wenhui, ZHANG Wen, WANG Boyang, et al. Analysis of characteristics of coal fine production and its influence factors in Baode block[J]. Reservoir Evaluation and Development, 2023, 13(4): 441-450.
    [17]
    李建新, 胡博文, 方杰, 等. 保德煤矿8号煤瓦斯赋存规律及主控因素研究[J]. 能源与环保, 2022, 44(12): 291-296.

    LI Jianxin, HU Bowen, FANG Jie, et al. Study on gas occurrence law and main control factors of No. 8 coal seam in Baode Coal Mine[J]. China Energy and Environmental Protection, 2022, 44(12): 291-296.
    [18]
    赵欣. 煤层气产能主控因素及开发动态特征研究[D]. 徐州: 中国矿业大学, 2017.

    ZHAO Xin. The study of main influence factors on productivity of coalbed methane well and the development performance[D]. Xuzhou: China University of Mining and Technology, 2017.
    [19]
    张雷, 徐凤银, 李子玲, 等. 煤层气田单/合层开发影响因素分析及应用: 以保德区块为例[J]. 煤田地质与勘探, 2022, 50(9): 68-77.

    ZHANG Lei, XU Fengyin, LI Ziling, et al. Analysis on influencing factors of single/multi-layer development of coalbed methane field: a case study of Baode block[J]. Coal Geology & Exploration, 2022, 50(9): 68-77.
    [20]
    HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(10): 389-392. http://download.xuebalib.com/xuebalib.com.12304.pdf
    [21]
    ALTINDAG R. The evaluation of rock brittleness concept on rotary blast hold drills[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2002, 102(1): 61-66. http://journals.co.za/deliver/fulltext/saimm/102/1/2770.pdf?itemId=/content/saimm/102/1/AJA0038223X_2763&mimeType=pdf&containerItemId=content/journal/saimm
    [22]
    RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale[C]//SPE Annual Technical Conference and Exhibition. Denver: SPE, 2008.
    [23]
    YAGIZ S. Assessment of brittleness using rock strength and density with punch penetration test[J]. Tunnelling and Underground Space Technology, 2009, 24(1): 66-74. doi: 10.1016/j.tust.2008.04.002
    [24]
    ZHANG Bo, ZHAO Tao, JIN Xiaochun, et al. Brittleness evaluation of resource plays by integrating petrophysical and seismic data analysis[J]. Interpretation, 2015, 3(2): T81-T92. doi: 10.1190/INT-2014-0144.1
    [25]
    HUANG Xinrui, HUANG Jianping, LI Zhenchun, et al. Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs[J]. Applied Geophysics, 2015, 12(1): 11-22. doi: 10.1007/s11770-014-0478-0
    [26]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    [27]
    吴正阳, 莫修文, 柳建华, 等. 裂缝性储层分级评价中的卷积神经网络算法研究与应用[J]. 石油物探, 2018, 57(4): 618-626. doi: 10.3969/j.issn.1000-1441.2018.04.017

    WU Zhengyang, MO Xiuwen, LIU Jianhua, et al. Convolutional neural network algorithm for classification evaluation of fractured reservoirs[J]. Geophysical Prospecting for Petroleum, 2018, 57(4): 618-626. doi: 10.3969/j.issn.1000-1441.2018.04.017
    [28]
    鲁朋, 宋保业, 许琳. 基于一维卷积神经网络的多工况轴承故障诊断[J]. 山东科技大学学报(自然科学版), 2023, 42(5): 88-96.

    LU Peng, SONG Baoye, XU Lin. Bearing fault diagnosis in multiple working conditions based on one dimensional convolutional neural network[J]. Journal of Shandong University of Science and Technology(Natural Sciences), 2023, 42(5): 88-96.
    [29]
    张岩, 赵蒙蒙, 孙英伟, 等. 基于卷积神经网络和混合注意力机制的书标检测算法[J]. 山东科技大学学报(自然科学版), 2023, 42(3): 94-102.

    ZHANG Yan, ZHAO Mengmeng, SUN Yingwei, et al. Title label detection using convolutional neural network and hybrid attention mechanism[J]. Journal of Shandong University of Science and Technology(Natural Sciences), 2023, 42(3): 94-102.
    [30]
    周文. 裂缝性油气储集层评价方法[M]. 成都: 四川科学技术出版社, 1998: 294.

    ZHOU Wen. Evaluation methods of fracture reservoir in oil and gas pool[M]. Chengdu: Sichuan Publishing House of Science & Technology, 1998: 294.
  • Relative Articles

    [1]SUN Lichun, LIU Jia, LI Na, LI Xinze, WEN Heng. Main controlling factors of production and reasonable fracturing scale optimization of deep coalbed methane wells in Shenfu block, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(1): 43-53. doi: 10.11781/sysydz2025010043
    [2]FANG Xulei, WANG Linlin, QI Rong, GAO Hui, YANG Fei, LIU Lu, SU Juan. Source-to-sink pattern and sand body distribution in the first member of Permian Lower Shihezi Formation in Fuxian area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(2): 284-295. doi: 10.11781/sysydz2025020284
    [3]HE Chencheng, ZHAO Yongqiang, YU Lingjie, LU Longfei, LIU Weixin, PAN Anyang, LI Chuxiong. Pore structure and fractal characteristics of deep shale gas reservoirs in the Permian Dalong Formation, northeastern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 263-277. doi: 10.11781/sysydz202402263
    [4]TANG Yong, YUAN Yunfeng, LI Hui, WANG Yafei, LÜ Zhengxiang, QING Yuanhua, LI Shubo, CHEN Hong, QIN Zhijun, WANG Qiuyu, XIE Zhiyi. Glutenite reservoir characteristics and development model of Permian Upper Wuerhe Formation in Fukang Sag, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 965-978. doi: 10.11781/sysydz202405965
    [5]NING Weike, JU Wei, XIANG Ru. Pressure prediction and genesis analysis of Huangliu Formation reservoir in DF block of Yinggehai Basin based on neural networks[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(5): 1088-1097. doi: 10.11781/sysydz2024051088
    [6]LI Jun, LU Heping, HU Xianghui, WANG Li, ZHOU Qing, PENG Meng. Drilling practice of marine shale gas in Permian Wujiaping Formation in Hongxing area of eastern Sichuan[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(6): 1189-1195. doi: 10.11781/sysydz2023061189
    [7]ZHANG Qingyu, JI Shaocong, ZENG Tao, XIA Wenqian, BA Junjie, DONG Hongqi, LIANG Bin. Experimental dissolution and karst strata association of Middle Permian Maokou carbonate rocks in the northern part of Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(1): 175-184. doi: 10.11781/sysydz202301175
    [8]LI Jiarui, YANG Zhi, WANG Zhaoyun, TANG Yong, ZHANG Hong, JIANG Wenqi, WANG Xiaoni, WEI Qizhao. Quantitative characterization and main controlling factors of shale oil occurrence in Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(4): 681-692. doi: 10.11781/sysydz202304681
    [9]LI Zhenming, XIONG Wei, WANG Bin, SONG Zhenxiang, SONG Meiyuan, SUN Zhongliang, YU Hongzhou, ZHOU Jian, WU Xiaoqi. Fine-grained sedimentary characteristics and evolution model of Permian Fengcheng Formation in Hashan area, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(4): 693-704. doi: 10.11781/sysydz202304693
    [10]ZHANG Zhuang, SU Chengpeng, SONG Xiaobo, SHI Guoshan, WANG Renfu, LI Suhua, DONG Xia, HU Yongliang. Petroleum geological conditions and exploration potential of the Permian Qixia Formation in the middle segment of Western Depression, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(6): 959-970. doi: 10.11781/sysydz202206959
    [11]ZHAO Yongqiang, NI Chunhua, WU Xiaoqi, ZHU Jianhui, LIU Guangxiang, WANG Fubin, JIA Huichong, ZHANG Wei, QI Rong, AN Chuan. Geochemical characteristics and source of Permian formation water in Hangjinqi area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(2): 279-287. doi: 10.11781/sysydz202202279
    [12]JIANG Zhili, ZHU Xiang. Hydrocarbon accumulation characteristics and main controlling factors for Permian Maokou Formation in Yuanba area, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 639-646. doi: 10.11781/sysydz202204639
    [13]ZHAO Ning, WANG Liang, ZHANG Lei, SIMA Liqiang, LIU Zhiyuan, WEN Dengfeng. Mechanical properties and fracturing characteristics of tight sandstones based on granularity classification: a case study of Permian Lower Shihezi Formation, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 720-729. doi: 10.11781/sysydz202204720
    [14]YU Xiaolu, YE Kai, DU Chongjiao, GONG Hanning, MA Zhongliang. Microscopic recognition of micro fossils in carbonate rocks based on convolutional neural network[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 880-885. doi: 10.11781/sysydz202105880
    [15]LUO Kaiping, YANG Fan, LU Yongde, LIU Zhaoqian, TANG Yong. Key structural periods and Permian tight gas accumulation response in Hangjinqi area, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(4): 557-568. doi: 10.11781/sysydz202104557
    [16]YAO Haifeng, WANG Jia, TAN Xianfeng, CHEN Lei, YANG Cheng, XIAO Long, LIU Shiming, JIANG Cong. Sedimentary characteristics of Permian-Triassic in Yangkang area, South Qilian Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(5): 699-707. doi: 10.11781/sysydz201905699
    [17]Sun Suqin. Prediction of single sand body and its application in Shanxi Formation of Permian, Daniudi Gas Field[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2012, 34(3): 340-344. doi: 10.11781/sysydz201203340
    [18]Guo Zhengquan, Qi Yalin, Chu Meijuan, Cheng Dangxing. Recovery of compact history of Yanchang reservoir in Upper Triassic, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2012, 34(6): 594-598. doi: 10.11781/sysydz201206594
    [19]Xing Housong, Xiao Hongping, Sun Fenjin, Xiao Jianxin, Liu Ruie, Zhang Chunlin, Lin Jie. SEDIMENTARY FACIES OF MEMBER 2 OF SHANXI FORMATION OF LOWER PERMIAN IN THE MIDDLE-EASTERN ORDOS BASIN[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2008, 30(4): 345-351. doi: 10.11781/sysydz200804345
    [20]Li Fengjie, Wang Duoyun, Xu Xuhui. THE INFLUENTIAL FACTORS AND CHARACTRISTICSOF TRIASSIC YANCHANG FORMATION RESERVIORIN LONGDONG AREA, ORDOS BASIN[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2005, 27(4): 365-370. doi: 10.11781/sysydz200504365
  • Cited by

    Periodical cited type(1)

    1. 张文,黄红星,刘莹,冯延青,孙伟,李子玲,王婧,赵增平. 鄂尔多斯盆地保德区块煤层气井可采储量与产气特征研究. 油气藏评价与开发. 2025(02): 257-265 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0501020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.9 %FULLTEXT: 28.9 %META: 60.2 %META: 60.2 %PDF: 10.9 %PDF: 10.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.0 %其他: 6.0 %其他: 1.0 %其他: 1.0 %上海: 2.0 %上海: 2.0 %兰州: 0.5 %兰州: 0.5 %北京: 3.0 %北京: 3.0 %南京: 1.5 %南京: 1.5 %南昌: 0.5 %南昌: 0.5 %南通: 0.5 %南通: 0.5 %厦门: 0.5 %厦门: 0.5 %哥伦布: 1.5 %哥伦布: 1.5 %大庆: 2.0 %大庆: 2.0 %天津: 2.0 %天津: 2.0 %安康: 1.0 %安康: 1.0 %常德: 1.0 %常德: 1.0 %平顶山: 0.5 %平顶山: 0.5 %广州: 0.5 %广州: 0.5 %弗吉尼亚州: 5.5 %弗吉尼亚州: 5.5 %张家口: 10.9 %张家口: 10.9 %成都: 1.0 %成都: 1.0 %扬州: 1.0 %扬州: 1.0 %新乡: 0.5 %新乡: 0.5 %无锡: 3.5 %无锡: 3.5 %昆明: 1.0 %昆明: 1.0 %杭州: 0.5 %杭州: 0.5 %武汉: 1.5 %武汉: 1.5 %沈阳: 0.5 %沈阳: 0.5 %深圳: 1.0 %深圳: 1.0 %温州: 1.5 %温州: 1.5 %漯河: 1.5 %漯河: 1.5 %石家庄: 3.5 %石家庄: 3.5 %秦皇岛: 0.5 %秦皇岛: 0.5 %芒廷维尤: 29.9 %芒廷维尤: 29.9 %莫斯科: 0.5 %莫斯科: 0.5 %西宁: 4.0 %西宁: 4.0 %西安: 2.0 %西安: 2.0 %运城: 1.5 %运城: 1.5 %遵义: 1.0 %遵义: 1.0 %郑州: 0.5 %郑州: 0.5 %重庆: 1.0 %重庆: 1.0 %锦州: 0.5 %锦州: 0.5 %长沙: 0.5 %长沙: 0.5 %阿什本: 1.0 %阿什本: 1.0 %其他其他上海兰州北京南京南昌南通厦门哥伦布大庆天津安康常德平顶山广州弗吉尼亚州张家口成都扬州新乡无锡昆明杭州武汉沈阳深圳温州漯河石家庄秦皇岛芒廷维尤莫斯科西宁西安运城遵义郑州重庆锦州长沙阿什本

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (120) PDF downloads(22) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return