Volume 47 Issue 3
May  2025
Turn off MathJax
Article Contents
GAO Lijun, LI Haiying, GONG Wei, YANG Wei, LI Hongyan. Optimal selection of high-production well targets for fault-controlled fractured-vuggy reservoir in Shunbei oil and gas field, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 479-489. doi: 10.11781/sysydz2025030479
Citation: GAO Lijun, LI Haiying, GONG Wei, YANG Wei, LI Hongyan. Optimal selection of high-production well targets for fault-controlled fractured-vuggy reservoir in Shunbei oil and gas field, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 479-489. doi: 10.11781/sysydz2025030479

Optimal selection of high-production well targets for fault-controlled fractured-vuggy reservoir in Shunbei oil and gas field, Tarim Basin

doi: 10.11781/sysydz2025030479
  • Received Date: 2024-10-21
  • Rev Recd Date: 2025-04-06
  • Publish Date: 2025-05-28
  • After years of exploration and development in the Shunbei oil and gas field, Tarim Basin, a series of technologies for ultra-deep fault-controlled fractured-vuggy target prediction, evaluation, and well location design have been formed, applicable to the No.1 and No.5 fault zones. As exploration efforts shift from the main No.1 and No.5 fault zones to the northeastern and northwestern fault zones in the eastern and western regions, the underground geological conditions become more complex, and exploration costs rise significantly. Existing reservoir characterization, target selection, and well trajectory design technologies are inadequate for the precise delineation of ultra-deep fault-controlled fractured-vuggy systems and high-yield well trajectory optimization. Through comparative analysis of the internal structural characteristics and seismic response variations of different regions and different types of strike-slip fault zones, integrated with actual well seismic calibration statistics and forward modeling, this study established a robust seismic identification model for high-yield and stable production wells. This model, based on the "source-connected faults + bead-string + deep chaotic high-amplitude background", provided a systematic framework for reservoir prediction and target selection. The Q-compensation seismic data processing technology developed through research improved the imaging resolution of fault-controlled fractured-vuggy systems in low signal-to-noise ratio seismic data under desert environments. Based on this, a reservoir quantification sculpting and target spatial positioning technology, centered on "facies-constrained inversion, " was established, which improved the accuracy of fault-controlled reservoir description and the precision of target selection. In response to the complex geological conditions of the overlying strata and Ordovician target layers in the Shunbei area, as well as challenges such as loss, overflow, and wellbore collapse during drilling, a key integrated geological engineering technology process focused on drilling risk prediction was established. This process included methods for optimizing well trajectories, selecting well locations, predicting formation pressures before drilling, and predicting wellbore stability, which improved drilling safety and efficiency. Drilling results from Shunbei's No. 4 and No. 8 fault zones indicated that the target selection and design technology for fault-controlled reservoirs could accurately identify and predict ultra-deep heterogeneous fractured-vuggy body targets, guide and optimize drilling trajectory design, avoid and reduce engineering risks along the drilling path, and improve the drilling success rate and high-yield well construction rate for large-scale reservoirs.

     

  • All authors declare no relevant conflict of interests.
    This article was written and revised by GAO Lijun. LI Haiying was responsible for the geological and engineering integration effectiveness evaluation. GONG Wei handled well trajectory optimization. YANG Wei conducted Q-compensation seismic enhancement analysis. LI Hongyan performed inversion result analysis. All authors have read the final version of the paper and consented to its submission.
  • loading
  • [1]
    马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17.

    MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration & Development, 2022, 49(1): 1-17.
    [2]
    焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839.

    JIAO Fangzheng. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839.
    [3]
    云露. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探, 2021, 26(3): 41-52.

    YUN Lu. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance, Tarim Basin[J]. China Petroleum Exploration, 2021, 26(3): 41-52.
    [4]
    漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51.

    QI Lixin. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole Uplift, Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3): 38-51.
    [5]
    焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216.

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216.
    [6]
    王清华, 蔡振忠, 张银涛, 等. 塔里木盆地超深层走滑断控油气藏研究进展与趋势[J]. 新疆石油地质, 2024, 45(4): 379-386.

    WANG Qinghua, CAI Zhenzhong, ZHANG Yintao, et al. Research progress and trend of ultra-deep strike-slip fault-controlled hydrocarbon reservoirs in Tarim Basin[J]. Xinjiang Petroleum Geology, 2024, 45(4): 379-386.
    [7]
    漆立新. 塔里木盆地顺北地区海相超深碳酸盐岩油气勘探物探技术需求与创新应用[J]. 石油物探, 2023, 62(3): 381-394.

    QI Lixin. Technical demand and innovative application of geophysical exploration technology for marine ultra-deep carbonate rocks in Shunbei area, Tarim Basin[J]. Geophysical Prospecting for Petroleum, 2023, 62(3): 381-394.
    [8]
    李宗杰, 杨子川, 李海英, 等. 顺北沙漠区超深断溶体油气藏三维地震勘探关键技术[J]. 石油物探, 2020, 59(2): 283-294.

    LI Zongjie, YANG Zichuan, LI Haiying, et al. Three-dimensional seismic exploration method for ultra-deep fault-related dissolution reservoirs in the Shunbei desert area[J]. Geophysical Prospecting for Petroleum, 2020, 59(2): 283-294.
    [9]
    刘宝增, 漆立新, 李宗杰, 等. 顺北地区超深层断溶体储层空间雕刻及量化描述技术[J]. 石油学报, 2020, 41(4): 412-420.

    LIU Baozeng, QI Lixin, LI Zongjie, et al. Spatial characterization and quantitative description technology for ultra-deep fault-karst reservoirs in the Shunbei area[J]. Acta Petrolei Sinica, 2020, 41(4): 412-420.
    [10]
    何治亮, 朱成宏, 徐蔚亚, 等. 深层—超深层碳酸盐岩多类型储集体地震预测[J]. 地球物理学报, 2023, 66(1): 65-82.

    HE Zhiliang, ZHU Chenghong, XU Weiya, et al. Seismic characterization of multi-type deep/ultra-deep carbonate reservoir[J]. Chinese Journal of Geophysics, 2023, 66(1): 65-82.
    [11]
    刘军, 龚伟, 黄超, 等. 塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用[J]. 地质科技情报, 2021, 41(4): 1-11.

    LIU Jun, GONG Wei, HUANG Chao, et al. Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No. 5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geological Science and Technology, 2021, 41(4): 1-11.
    [12]
    吕海涛, 韩俊, 张继标, 等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质, 2021, 43(1): 14-22. doi: 10.11781/sysydz202101014

    LV Haitao, HAN Jun, ZHANG Jibiao, et al. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 14-22. doi: 10.11781/sysydz202101014
    [13]
    邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888.

    DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888.
    [14]
    林波, 张旭, 况安鹏, 等. 塔里木盆地走滑断裂构造变形特征及油气意义: 以顺北地区1号和5号断裂为例[J]. 石油学报, 2021, 42(7): 906-923.

    LIN Bo, ZHANG Xu, KUANG Anpeng, et al. Structural deformation characteristics of strike-slip faults in Tarim Basin and their hydrocarbon significance: a case study of No. 1 fault and No. 5 fault in Shunbei area[J]. Acta Petrolei Sinica, 2021, 42(7): 906-923.
    [15]
    卜旭强, 王来源, 朱莲花, 等. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.

    BU Xuqiang, WANG Laiyuan, ZHU Lianhua, et al. Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field, Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(3): 152-160.
    [16]
    曹自成, 云露, 漆立新, 等. 塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义[J]. 石油与天然气地质, 2024, 45(2): 341-356.

    CAO Zicheng, YUN Lu, QI Lixin, et al. A major discovery of hydrocarbon-bearing layers over 1, 000-meter thick in well Shunbei 84X, Shunbei area, Tarim Basin and its implications[J]. Oil & Gas Geology, 2024, 45(2): 341-356.
    [17]
    云露, 朱秀香. 一种新型圈闭: 断控缝洞型圈闭[J]. 石油与天然气地质, 2022, 43(1): 34-42.

    YUN Lu, ZHU Xiuxiang. A new trap type: fault-controlled fracture-vuggy trap[J]. Oil & Gas Geology, 2022, 43(1): 34-42.
    [18]
    韩俊, 况安鹏, 能源, 等. 顺北5号走滑断裂带纵向分层结构及其油气地质意义[J]. 新疆石油地质, 2021, 42(2): 152-160.

    HAN Jun, KUANG Anpeng, NENG Yuan, et al. Vertical layered structure of Shunbei No. 5 strike-slip fault zone and its significance on hydrocarbon accumulation[J]. Xinjiang Petroleum Geology, 2021, 42(2): 152-160.
    [19]
    张继标, 张仲培, 汪必峰, 等. 塔里木盆地顺南地区走滑断裂派生裂缝发育规律及预测[J]. 石油与天然气地质, 2018, 39(5): 955-963.

    ZHANG Jibiao, ZHANG Zhongpei, WANG Bifeng, et al. Development pattern and prediction of induced fractures from strike-slip faults in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 955-963.
    [20]
    李海英, 刘军, 龚伟, 等. 顺北地区走滑断裂与断溶体圈闭识别描述技术[J]. 中国石油勘探, 2020, 25(3): 107-120.

    LI Haiying, LIU Jun, GONG Wei, et al. Identification and characterization of strike-slip faults and traps of fault-karst reservoir in Shunbei area[J]. China Petroleum Exploration, 2020, 25(3): 107-120.
    [21]
    廖茂辉, 刘军, 龚伟, 等. 顺北地区断控缝洞型储层反射特征与预测技术探讨[J]. 工程地球物理学报, 2020, 17(6): 703-710.

    LIAO Maohui, LIU Jun, GONG Wei, et al. Discussion on reflection characteristics and prediction technology of fault-controlling fractured-vuggy reservoir in Shunbei area[J]. Chinese Journal of Engineering Geophysics, 2020, 17(6): 703-710.
    [22]
    刘军, 李伟, 龚伟, 等. 顺北地区超深断控储集体地震识别与描述[J]. 新疆石油地质, 2021, 42(2): 238-245.

    LIU Jun, LI Wei, GONG Wei, et al. Seismic identification and description of ultra-deep fault-controlled reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2): 238-245.
    [23]
    赵锐锐, 周强, 彭更新, 等. 塔里木盆地沙漠区超深层碳酸盐岩地震资料精细处理技术[J]. 物探化探计算技术, 2023, 45(6): 717-725.

    ZHAO Ruirui, ZHOU Qiang, PENG Gengxin, et al. Application of high-precision seismic processing technology for ultra-deep carbonate reservoir in the great desert area, Tarim Basin, NW China[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2023, 45(6): 717-725.
    [24]
    甘其刚, 许多, 王仰华. 利用稳定反Q滤波技术提高储层预测精度: 以川西新场气田上三叠统须家河组气藏为例[J]. 天然气工业, 2012, 32(3): 42-44.

    GAN Qigang, XU Duo, WANG Yanghua. Using stable inverse Q-filter technology to improve reservoir prediction accuracy: taking the Xujiahe Formation gas reservoir in the Upper Triassic of Xinchang Gas Field in western Sichuan as an example[J]. Natural Gas Industry, 2012, 32(3): 42-44.
    [25]
    李宗杰. 正演模拟验证叠前弹性阻抗反演在碳酸盐储层预测中的应用[J]. 石油物探, 2013, 52(3): 323-328.

    LI Zongjie. Application of prestack elastic impedance inversion in carbonate reservoirs prediction based on forward modeling[J]. Geophysical Prospecting for Petroleum, 2013, 52(3): 323-328.
    [26]
    张永升, 李弘艳, 龚伟, 等. 三维一体化综合地质建模及地震正演模拟研究: 以顺北地区为例[J/OL]. 地球物理学进展, 1-15(2024-12-30). http://kns.cnki.net/kcms/detail/11.2982.p.20241227.1451.014.html.

    ZHANG Yongsheng, LI Hongyan, GONG Wei et al. A study on 3D integrated comprehensive geological modeling and seismic forward simulation: taking Shunbei region as an example[J/OL]. Progress in Geophysics, 1-15(2024-12-30). http://kns.cnki.net/kcms/detail/11.2982.p.20241227.1451.014.html.
    [27]
    刘军, 任丽丹, 李宗杰, 等. 塔里木盆地顺南地区深层碳酸盐岩断裂和裂缝地震识别与评价[J]. 石油与天然气地质, 2017, 38(4): 703-710.

    LIU Jun, REN Lidan, LI Zongjie, et al. Seismic identification and evaluation of deep carbonate faults and fractures in Shunnan area, Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 703-710.
    [28]
    王来源, 刘军, 龚伟, 等. 塔里木盆地顺北超深断控缝洞型储层高精度预测技术与应用[J]. 地球物理学进展, 2025, 40(1): 199-207.

    WANG Laiyuan, LIU Jun, GONG Wei, et al. High-precision reservoir prediction technology and application of superdeep fault-controlled fracture-cave type in Shunbei, Tarim Basin[J]. Progress in Geophysics, 2025, 40(1): 199-207.
    [29]
    张文文, 张楠, 龚伟. 顺北油田强反射背景下缝洞体识别方法研究[J]. 工程地球物理学报, 2025, 22(1): 126-135.

    ZHANG Wenwen, ZHANG Nan, GONG Wei. Research on the identification method of fracture-cave body under strong reflection background in Shunbei oilfield[J]. Chinese Journal of Engineering Geophysics, 2025, 22(1): 126-135.
    [30]
    王鹏, 龚伟, 吴金才, 等. 顺北油田分支断裂及断控储层的识别与描述研究[J]. 工程地球物理学报, 2024, 21(4): 663-671.

    WANG Peng, GONG Wei, WU Jincai, et al. Identification and description of branch fracture and fault-controlled reservoirs in Shunbei oilfield[J]. Chinese Journal of Engineering Geophysics, 2024, 21(4): 663-671.
    [31]
    王鹏, 刘军, 顾汉明. 不连续性属性增强技术在顺北地区断控不同尺度裂缝检测中的应用[J]. 工程地球物理学报, 2019, 16(2): 131-137.

    WANG Peng, LIU Jun, GU Hanming. The application of enhancement for seismic discontinuity attributes to detection of fracture with different scales in Shunbei area[J]. Chinese Journal of Engineering Geophysics, 2019, 16(2): 131-137.
    [32]
    丁圣, 刘金华, 尚娅敏, 等. Z4变质岩潜山油藏裂缝特征及地震预测[J]. 新疆石油地质, 2024, 45(5): 516-521.

    DING Sheng, LIU Jinhua, SHANG Yamin, et al. Fracture characteristics and seismic prediction of Z4 metamorphic buried-hill reservoir[J]. Xinjiang Petroleum Geology, 2024, 45(5): 516-521.
    [33]
    李海英, 李伟, 刘军, 等. 两步相控反演在塔里木盆地顺北8井区碳酸盐岩断控储集体预测中的应用[J]. 天然气地球科学, 2023, 34(11): 1961-1970.

    LI Haiying, LI Wei, LIU Jun, et al. Two-step facies-constrained inversion in prediction of carbonate rock fault-controlled reservoirs with post stack seismic in No. 8 structure of Shunbei block, Tarim Basin[J]. Natural Gas Geoscience, 2023, 34(11): 1961-1970.
    [34]
    张永升, 刘军, 黄超, 等. 高精度方位各向异性反演在顺北8号带裂缝检测中的应用[J]. 石油物探, 2024, 63(6): 1238-1246.

    ZHANG Yongsheng, LIU Jun, HUANG Chao, et al. Application of high-precision azimuthal anisotropy inversion for fracture detection in Shunbei No. 8 belt[J]. Geophysical Prospecting for Petroleum, 2024, 63(6): 1238-1246.
    [35]
    刘群, 王世星, 顾汉明, 等. 碳酸盐岩缝洞体体积定量计算及其影响因素分析探索: 以塔河油田主体区为例[J]. 石油物探, 2013, 52(2): 217-222.

    LIU Qun, WANG Shixing, GU Hanming, et al. Carbonate fracture-cave volume quantitative calculation and its influencing factors analysis: case study of the main area in Tahe Oilfield[J]. Geophysical Prospecting for Petroleum, 2013, 52(2): 217-222.
    [36]
    李宗杰, 刘群, 李海英, 等. 地震古岩溶学理论及应用[J]. 西南石油大学学报(自然科学版), 2013, 35(6): 9-19.

    LI Zongjie, LIU Qun, LI Haiying, et al. Theory and application of seismic palaeokarst[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(6): 9-19.
    [37]
    王来源, 龚伟, 李弘艳. 超深断控碳酸盐岩缝洞储集体地震预测与井轨迹设计: 以顺北油田4号断裂带中北部为例[J]. 复杂油气藏, 2024, 17(3): 288-295.

    WANG Laiyuan, GONG Wei, LI Hongyan. Seismic prediction and well trajectory design for ultra-deep fault-controlled carbonate fractured cave reservoirs: taking the north-central part of fault zone No. 4 in the Shunbei Oilfield as an example[J]. Complex Hydrocarbon Reservoirs, 2024, 17(3): 288-295.
    [38]
    唐磊, 王建峰, 曹敬华, 等. 塔里木盆地顺北地区超深断溶体油藏地质工程一体化模式探索[J]. 油气藏评价与开发, 2021, 11(3): 329-339.

    TANG Lei, WANG Jianfeng, CAO Jinghua, et al. Geology-engineering integration mode of ultra-deep fault-karst reservoir in Shunbei area, Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 329-339.
    [39]
    孙焕泉, 周德华, 赵培荣, 等. 中国石化地质工程一体化发展方向[J]. 油气藏评价与开发, 2021, 11(3): 269-280.

    SUN Huanquan, ZHOU Dehua, ZHAO Peirong, et al. Geology-engineering integration development direction of SINOPEC[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 269-280.
    [40]
    鲜成钢, 张介辉, 陈欣, 等. 地质力学在地质工程一体化中的应用[J]. 中国石油勘探, 2017, 22(1): 75-88.

    XIAN Chenggang, ZHANG Jiehui, CHEN Xin, et al. Application of geomechanics in geology-engineering integration[J]. China Petroleum Exploration, 2017, 22(1): 75-88.
    [41]
    杨海军, 张辉, 尹国庆, 等. 基于地质力学的地质工程一体化助推缝洞型碳酸盐岩高效勘探: 以塔里木盆地塔北隆起南缘跃满西区块为例[J]. 中国石油勘探, 2018, 23(2): 27-36.

    YANG Haijun, ZHANG Hui, YIN Guoqing, et al. Geomechanics-based geology-engineering integration boosting high-efficiency exploration of fractured-vuggy carbonate reservoirs: a case study on West Yueman block, northern Tarim Basin[J]. China Petroleum Exploration, 2018, 23(2): 27-36.
    [42]
    漆立新, 樊政军, 李宗杰, 等. 塔河油田碳酸盐岩储层三孔隙度测井模型的建立及其应用[J]. 石油物探, 2010, 49(5): 489-494.

    QI Lixin, FAN Zhengjun, LI Zongjie, et al. Tri-porosity logging model of carbonate reservoir in Tahe Oilfield and its application[J]. Geophysical Prospecting for Petroleum, 2010, 49(5): 489-494.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (46) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return