Citation: | ZHENG Xiaowei, JIANG Fujie, ZHANG Yu, ZHOU Jingqi. Research progress and challenges in thermal maturity evalution of Lower Paleozoic source rocks[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 569-579. doi: 10.11781/sysydz2025030569 |
[1] |
BOTOR D. Organic matter thermal maturity analysis and modelling in the Paleozoic-Mesozoic section of the Miechow Trough (southern Poland): implications for thermal evolution[J]. Geological Quarterly, 2024, 68(4): 1-19.
|
[2] |
TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin: Springer, 2013.
|
[3] |
WU Jin, LUO Qingyong, Zhang Ye, et al. The organic petrology of vitrinite-like maceral in the Lower Paleozoic shales: implications for the thermal maturity evaluation[J]. International Journal of Coal Geology, 2023, 274: 104282. doi: 10.1016/j.coal.2023.104282
|
[4] |
YANG Peng, LIU Keyu, EVANS N J, et al. Petroleum accumulation history of deeply buried carbonate reservoirs in the northern Tarim Basin, northwestern China[J]. AAPG Bulletin, 2024, 108(7): 1193-1229. doi: 10.1306/06212321210
|
[5] |
LUO Qingyong, FARIBORZ G, ZHONG Ningning, et al. Graptolites as fossil geo-thermometers and source material of hydrocarbons: an overview of four decades of progress[J]. Earth-Science Reviews, 2020, 200: 103000. doi: 10.1016/j.earscirev.2019.103000
|
[6] |
罗情勇, 郝婧玥, 李可文, 等. 下古生界有机质成熟度评价新参数: 笔石表皮体光学特征再研究[J]. 地质学报, 2019, 93(9): 2362-2371. doi: 10.3969/j.issn.0001-5717.2019.09.017
LUO Qingyong, HAO Jingyue, LI Kewen, et al. A new parameter for the thermal maturity assessment of organic matter from the Lower Palaeozoic sediments: a re-study on the optical characteristics of graptolite periderms[J]. Acta Geologica Sinica, 2019, 93(9): 2362-2371. doi: 10.3969/j.issn.0001-5717.2019.09.017
|
[7] |
赵文智, 王兆云, 王红军, 等. 有机质"接力成气"模式的提出及其在勘探中的意义[J]. 石油勘探与开发, 2005(2): 1-7. doi: 10.3321/j.issn:1000-0747.2005.02.001
ZHAO Wenzhi, WANG Zhaoyun, WANG Hongjun, et al. Successive generation of natural gas from organic materials and its significance in future exploration[J]. Petroleum Exploration and Development, 2005, 32(2): 1-7. doi: 10.3321/j.issn:1000-0747.2005.02.001
|
[8] |
赵文智, 王兆云, 王红军, 等. 再论有机质"接力成气"的内涵与意义[J]. 石油勘探与开发, 2011, 38(2): 129-135.
ZHAO Wenzhi, WANG Zhaoyun, WANG Hongjun, et al. Further discussion on the connotation and significance of the natural gas relaying generation model from organic matter[J]. Petroleum Exploration and Development, 2011, 38(2): 129-135.
|
[9] |
SANEI H. Genesis of solid bitumen[J]. Scientific Reports, 2020, 10(1): 15595. doi: 10.1038/s41598-020-72692-2
|
[10] |
李长志, 郭佩, 豆霜, 等. 固体沥青形态、成因以及应用研究进展[J]. 沉积学报, 2024, 42(5): 1479-1493.
LI Changzhi, GUO Pei, DOU Shuang, et al. Research progress on solid bitumen morphology, genesis, and application[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1479-1493.
|
[11] |
HACKLEY P C, JUBB A M, SMITH P L, et al. Evaluating aromatization of solid bitumen generated in the presence and absence of water: implications for solid bitumen reflectance as a thermal proxy[J]. International Journal of Coal Geology, 2022, 258: 104016. doi: 10.1016/j.coal.2022.104016
|
[12] |
LI Zongxing, HUANG Haiping, HE Chuan, et al. Maturation impact on polyaromatic hydrocarbons and organosulfur compounds in the Carboniferous Keluke Formation from Qaidam Basin, NW China[J]. Energy & Fuels, 2019, 33(5): 4115-4129.
|
[13] |
SZCZERBA M, ROSPONDEK M J. Controls on distributions of methylphenanthrenes in sedimentary rock extracts: critical evaluation of existing geochemical data from molecular modelling[J]. Organic Geochemistry, 2010, 41(12): 1297-1311. doi: 10.1016/j.orggeochem.2010.09.009
|
[14] |
SAUERER B, CRADDOCK P R, ALJOHANI M D, et al. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation[J]. International Journal of Coal Geology, 2017, 173: 150-157. doi: 10.1016/j.coal.2017.02.008
|
[15] |
HENRY D G, JARVIS I, GILLMORE G, et al. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology[J]. Earth-Science Reviews, 2019, 198: 102936. doi: 10.1016/j.earscirev.2019.102936
|
[16] |
CARVAJAL-ORTIZ H, GENTZIS T. Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: data quality revisited[J]. International Journal of Coal Geology, 2015, 152: 113-122. doi: 10.1016/j.coal.2015.06.001
|
[17] |
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
|
[18] |
邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293.
ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.
|
[19] |
SCHULZ H M, YANG Shengyu, SCHOVSBO N H, et al. The Furongian to Lower Ordovician Alum Shale Formation in conventional and unconventional petroleum systems in the Baltic Basin: a review[J]. Earth-Science Reviews, 2021, 218: 103674. doi: 10.1016/j.earscirev.2021.103674
|
[20] |
VAROL Ö N, DEMIREL I H, RICKARDS R B, et al. Source rock characteristics and biostratigraphy of the Lower Silurian (Telychian) organic-rich shales at Akyaka, central Taurus region, Turkey[J]. Marine and Petroleum Geology, 2006, 23(9/10): 901-911.
|
[21] |
PHILP R P, DEGARMO C D. Geochemical characterization of the Devonian-Mississippian Woodford shale from the McAlister Cemetery Quarry, Criner Hills Uplift, Ardmore Basin, Oklahoma[J]. Marine and Petroleum Geology, 2020, 112: 104078. doi: 10.1016/j.marpetgeo.2019.104078
|
[22] |
LVNING S, CRAIG J, LOYDELL D K, et al. Lower Silurian 'hot shales'in North Africa and Arabia: regional distribution and depositional model[J]. Earth-Science Reviews, 2000, 49(1/4): 121-200.
|
[23] |
徐国盛, 徐燕丽, 袁海锋, 等. 川中—川东南震旦系—下古生界烃源岩及储层沥青的地球化学特征[J]. 石油天然气学报, 2007, 29(4): 45-51.
XU Guosheng, XU Yanli, YUAN Haifeng, et al. Geochemical characteristics of source rocks and reservoir bitumen of Sinian-Lower Palaeozoic in the middle-southwest of Sichuan Basin[J]. Journal of Oil and Gas Technology, 2007, 29(4): 45-51.
|
[24] |
袁东山, 郜建军, 朱建辉, 等. 鄂尔多斯富县地区下古生界烃源岩地球化学特征[J]. 石油天然气学报, 2009, 31(4): 58-61. doi: 10.3969/j.issn.1000-9752.2009.04.013
YUAN Dongshan, GAO Jianjun, ZHU Jianhui, et al. Geochemical characteristics of Lower Palaeozoic hydrocarbon source rocks in Fuxian exploration area of Ordos Basin[J]. Journal of Oil and Gas Technology, 2009, 31(4): 58-61. doi: 10.3969/j.issn.1000-9752.2009.04.013
|
[25] |
李辉. 川东南下古生界烃源岩特征研究[D]. 成都: 成都理工大学, 2013.
LI Hui. Study on characteristics of the Lower Paleozoic source rocks, southeast Sichuan[D]. Chengdu: Chengdu University of Technology, 2013.
|
[26] |
李苗春. 下古生界烃源岩有机岩石学特征及其地质意义: 以上扬子地区为例[D]. 南京: 南京大学, 2014.
LI Miaochun. The organic petrology and geological significance of Lower Paleozoic source rock: a case study of what in Upper Yangtze region[D]. Nanjing: Nanjing University, 2014.
|
[27] |
云金表, 金之钧, 解国军. 塔里木盆地下古生界主力烃源岩分布[J]. 石油与天然气地质, 2014, 35(6): 827-838.
YUN Jinbiao, JIN Zhijun, XIE Guojun. Distribution of major hydrocarbon source rocks in the Lower Palaeozoic, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 827-838.
|
[28] |
刘大锰, 金奎励, 艾天杰. 塔里木盆地海相烃源岩显微组分的分类及其岩石学特征[J]. 沉积学报, 1995, 13(S1): 124-133.
LIU Dameng, JIN Kuili, AI Tianjie. A petrographic classification and organic petrological characteristics of macerals of the marine hydrocarbon source rocks in the Tarim Basin[J]. Acta Sedimentologica Sinica, 1995, 13(S1): 124-133.
|
[29] |
何涛华. 塔里木盆地下古生界烃源岩有效性及其形成环境研究[D]. 青岛: 中国石油大学(华东), 2022.
HE Taohua. Effectiveness and depositional conditions of Lower-Paleozoic effective source rocks in the Tarim Basin[D]. Qingdao: China University of Petroleum (East China), 2022.
|
[30] |
胡广, 刘文汇, 罗厚勇, 等. 成烃生物组合对烃源岩干酪根碳同位素组成的影响: 以塔里木盆地下古生界烃源岩为例[J]. 矿物岩石地球化学通报, 2019, 38(5): 902-913.
HU Guang, LIU Weihui, LUO Houyong, et al. The impaction of original organism assemblages in source rocks on the kerogen carbon isotopic compositions: a case study of the Early Paleozoic source rocks in the Tarim Basin, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(5): 902-913.
|
[31] |
XU Shijing, WANG Jian, WU Nan, et al. Geochemical characteristics of Cambrian bitumen and Cambrian-Ordovician source rocks in the Keping area, NW Tarim Basin[J]. Frontiers in Earth Science, 2023, 11: 1323705. doi: 10.3389/feart.2023.1323705
|
[32] |
秦胜飞, 秦勇, 钟宁宁, 等. 海相碳酸盐岩有机岩石学研究若干进展[J]. 中国海上油气. 地质, 1997, 11(4): 22-28.
QIN Shengfei, QIN Yong, ZHONG Ningning, et al. Some advances of study on organic petrology of marine carbonate rock[J]. China Offshore Oil and Gas (Geology), 1997, 11(4): 22-28.
|
[33] |
ZHENG Xiaowei, SCHOVSBO N H, BIAN Leibo, et al. Alteration of organic macerals by uranium irradiation in Lower Paleozoic marine shales[J]. International Journal of Coal Geology, 2021, 239: 103713. doi: 10.1016/j.coal.2021.103713
|
[34] |
罗情勇, 钟宁宁, 李美俊, 等. 前寒武纪: 早古生代沉积岩显微组分分类、成因及演化[J]. 石油与天然气地质, 2023, 44(5): 1084-1101.
LUO Qingyong, ZHONG Ningning, LI Meijun, et al. Classification, origins, and evolution of macerals in the Precambrian-Eopaleozoic sedimentary rocks[J]. Oil & Gas Geology, 2023, 44(5): 1084-1101.
|
[35] |
陈尚斌, 左兆喜, 朱炎铭, 等. 页岩气储层有机质成熟度测试方法适用性研究[J]. 天然气地球科学, 2015, 26(3): 564-574.
CHEN Shangbin, ZUO Zhaoxi, ZHU Yanming, et al. Applicability of the testing method for the maturity of organic matter in shale gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(3): 564-574.
|
[36] |
王晔. 四川盆地下古生界页岩成熟度表征和成熟过程研究[D]. 北京: 中国石油大学(北京), 2019.
WANG Ye. Thermal maturity and maturity history of the Lower Paleozoic shale in Sichuan Basin[D]. Beijing: China University of Petroleum, Beijing, 2019.
|
[37] |
HACKLEY P C, SCOTT C, BIRDWELL J E, et al. Insights on using solid bitumen reflectance as a thermal maturity proxy in the Bakken Formation, Williston Basin, USA[J]. ACS Omega, 2024, 9(31): 33983-33997. doi: 10.1021/acsomega.4c04547
|
[38] |
ZHENG Xiaowei, SCHOVSBO N H, LUO Qingyong, et al. Graptolite reflectance anomaly[J]. International Journal of Coal Geology, 2022, 261: 104072.
|
[39] |
蒋武, 陆廷清, 罗玉琼. 牙形石色变在碳酸盐岩油气田勘探中的应用[J]. 石油勘探与开发, 1999(2): 46-48.
JIANG Wu, LU Tinqing, LUO Yuqiong. The application of conodont CAI in carbonate oil gas fields exploration[J]. Petroleum Exploration and Development, 1999(2): 46-48.
|
[40] |
田雨, 刘可禹, 蒲秀刚, 等. 荧光光谱技术在页岩油地质评价中的应用[J]. 石油学报, 2022, 43(6): 816-828.
TIAN Yu, LIU Keyu, PU Xiugang, et al. Application of fluorescence spectroscopy in geological evaluation of shale oil[J]. Acta Petrolei Sinica, 2022, 43(6): 816-828.
|
[41] |
LAFARGUE E, MARQUIS F, PILLOT D. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies[J]. Oil & Gas Science and Technology, 1998, 53(4): 421-437.
|
[42] |
RADKE M, WILLSCH H, LEYTHAEUSER D, et al. Aromatic components of coal: relation of distribution pattern to rank[J]. Geochimica et Cosmochimica Acta, 1982, 10(46): 1831-1848.
|
[43] |
赵生辉, 赵建华, 刘可禹, 等. 基于纳米红外光谱技术表征页岩中有机质的分子结构[J]. 天然气地球科学, 2024, 35(7): 1249-1260.
ZHAO Shenghui, ZHAO Jianhua, LIU Keyu, et al. Characterization of organic matter molecular structure in shale based on nano-infrared spectroscopy[J]. Natural Gas Geoscience, 2024, 35(7): 1249-1260.
|
[44] |
STOKES M R, JUBB A M, HACKLEY P C, et al. Evaluation of portable Raman spectroscopic analysis for source-rock thermal maturity assessments on bulk crushed rock[J]. International Journal of Coal Geology, 2023, 279: 104374.
|
[45] |
汪啸风, HOFFKNECHT A, 萧建新, 等. 笔石、几丁虫和虫牙反射率在热成熟度上的应用[J]. 地质学报, 1992, 66(3): 269-279.
WAMG Xiaofeng, HOFFKNECHT A, XIAO Jianxin, et al. Graptolite, chintinozoan and scolecodont reflectances and their use as an indicator of thermal maturity[J]. Acta Geologica Sinica, 1992, 66(3): 269-279.
|
[46] |
WANG Ye, QIU Nansheng, TAO Ni, et al. Thermal maturity calibration of extremely high-mature pre-Devonian strata: a case study from the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin, South China[J]. Geoenergy Science and Engineering, 2023, 222: 211411.
|
[47] |
STOKES M R, VALENTINE B J, HACKLEY P C, et al. Relating systematic compositional variability to the textural occurrence of solid bitumen in shales[J]. International Journal of Coal Geology, 2022, 261: 104068.
|
[48] |
房忱琛, 翟佳, 胡国艺, 等. 凝析油中金刚烷类和硫代金刚烷类化合物同步检测方法及地质意义: 以塔里木盆地塔中地区凝析油为例[J]. 石油实验地质, 2021, 43(5): 906-914. doi: 10.11781/sysydz202105906
FANG Chenchen, ZHAI Jia, HU Guoyi, et al. A simultaneous determination method for diamondoids and thiadiamondoids in condensate oil and its geological significance: taking condensate oil from central Tarim Basin as an example[J]. Petroleum Geology & Experiment, 2021, 43(5): 906-914. doi: 10.11781/sysydz202105906
|
[49] |
王瑞林, 王霆, 朱光有, 等. 原油中金刚烷同系物同分异构体丰度差异及影响机制: 以塔里木盆地轮古地区为例[J]. 天然气地球科学, 2022, 33(12): 2087-2099.
WANG Ruilin, WANG Ting, ZHU Guangyou, et al. Abundance difference and influence mechanism of different diamondoid isomers in crude oil: taking Lungu area of Tarim Basin as an example[J]. Natural Gas Geoscience, 2022, 33(12): 2087-2099.
|
[50] |
轩永, 王伟, 李芸, 等. 原油和烃源岩中三、四金刚烷类化合物的绝对定量与热演化研究[J]. 地球化学, 2024, 53(5): 643-654.
XUAN Yong, WANG Wei, LI Yun, et al. Absolute quantitative analysis and thermal evolution of trimantanes and tetramantanes in crude oil and source rock[J]. Geochimica, 2024, 53(5): 643-654.
|
[51] |
杨思博, 赖洪飞, 李美俊, 等. 湖相烃源岩有机质甲基菲指数及甲基菲比值与成熟度关系[J]. 长江大学学报(自科版), 2018, 15(19): 12-17.
YANG Sibo, LAI Hongfei, LI Meijun, et al. The relationship between methylphenanthrene index, methylphenanthrene ratio and maturity in lacustrine source rocks[J]. Journal of Yangtze University(Natural Science Edition), 2018, 15(19): 12-17.
|
[52] |
宋笛. 我国南方下古生界优质烃源岩成烃生物特征及其油气地质意义[D]. 南京: 南京大学, 2019.
SONG Di. Hydrocarbon-forming organism characteristics and their petroleum geological significance of high-quality source rocks in the Lower Paleozoic in southern China[D]. Nanjing: Nanjing University, 2019.
|
[53] |
RADKE M, WELTE D H, WILLSCH H. Geochemical study on a well in the western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter[J]. Geochimica Et Cosmochimica Acta, 1982, 46(1): 1-10.
|
[54] |
KVALHEIM O M, CHRISTY A A, TELNÆS N, et al. Maturity determination of organic matter in coals using the methylphenanthrene distribution[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1883-1888.
|
[55] |
SMITH J W, GEORGE S C, BATTS B D. The geosynthesis of alkylaromatics[J]. Organic Geochemistry, 1995, 23(1): 71-80.
|
[56] |
STOJANOVI K, JOVAN I EVI B, VITOROVI D, et al. New maturation parameters based on naphthalene and phenanthrene isomerization and dealkylation processes aimed at improved classification of crude oils (southeastern Pannonian Basin, Serbia)[J]. Geochemistry International, 2007, 45(8): 781-797.
|
[57] |
RADKE M, WELTE D H, WILLSCH H. Maturity parameters based on aromatic hydrocarbons: influence of the organic matter type[J]. Organic Geochemistry, 1986, 10(1/3): 51-63.
|
[58] |
ZHENG Xiaowei, SCHWARK L, STOCKHAUSEN M, et al. Effects of synthetic maturation on phenanthrenes and dibenzothiophenes over a maturity range of 0.6 to 4.7% EASY%Ro[J]. Marine and Petroleum Geology, 2023, 153: 106285.
|
[59] |
CHAKHMAKHCHEV A, SUZUKI M, TAKAYAMA K. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments[J]. Organic Geochemistry, 1997, 26(7/8): 483-489.
|
[60] |
吴嘉, 齐雯, 罗情勇, 等. 二甲基二苯并噻吩生成实验及地球化学意义[J]. 石油实验地质, 2019, 41(2): 260-267. doi: 10.11781/sysydz201902260
WU Jia, QI Wen, LUO Qingyong, et al. Experiments on the generation of dimethyldibenzothiophene and its geochemical implications[J]. Petroleum Geology and Experiment, 2019, 41(2): 260-267. doi: 10.11781/sysydz201902260
|
[61] |
孟江辉, 吕沛熙, 吴伟, 等. 基于笔石表皮体反射率和拉曼光谱评价海相页岩热成熟度的方法: 以川南下古生界五峰组—龙马溪组为例[J]. 石油与天然气地质, 2022, 43(6): 1515-1528.
MENG Jianghui, LV Peixi, WU Wei, et al. A method for evaluating the thermal maturity of marine shale based on graptolite reflectance and Raman spectroscopy: a case from the Lower Palaeozoic Wufeng-Longmaxi Formation, southern Sichuan Basin, SW China[J]. Oil & Gas Geology, 2022, 43(6): 1515-1528.
|
[62] |
YANG Shengyu, HORSFIELD B. Critical review of the uncertainty of Tmax in revealing the thermal maturity of organic matter in sedimentary rocks[J]. International Journal of Coal Geology, 2020, 225: 103500.
|
[63] |
张延延, 李水福, 胡守志, 等. 单质硫和含硫矿物对固体沥青中生物标志物热演化过程的影响[J]. 地球化学, 2021, 50(3): 237-250.
ZHANG Yanyan, LI Shuifu, HU Shouzhi, et al. Effects of elemental sulfur and sulfur-bearing minerals on the thermal evolution of biomarkers in solid bitumen[J]. Geochimica, 2021, 50(3): 237-250.
|
[64] |
SYNNOTT D P, SANEI H, PEDERSEN P K, et al. The effect of bacterial degradation on bituminite reflectance[J]. International Journal of Coal Geology, 2016, 162: 34-38.
|