Volume 47 Issue 4
Jul.  2025
Turn off MathJax
Article Contents
TANG Youjun, FU Tianyi, YANG Haifeng, WANG Feilong, TANG Guomin, SUN Peng. Crude oil type classification and source rock identification in Miaoxi area of Bohai Sea area based on stoichiometric method[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 820-834. doi: 10.11781/sysydz2025040820
Citation: TANG Youjun, FU Tianyi, YANG Haifeng, WANG Feilong, TANG Guomin, SUN Peng. Crude oil type classification and source rock identification in Miaoxi area of Bohai Sea area based on stoichiometric method[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 820-834. doi: 10.11781/sysydz2025040820

Crude oil type classification and source rock identification in Miaoxi area of Bohai Sea area based on stoichiometric method

doi: 10.11781/sysydz2025040820
  • Received Date: 2024-11-13
  • Rev Recd Date: 2025-06-12
  • Publish Date: 2025-07-28
  • The crude oil types in the Miaoxi area of the Bohai Sea area are highly complex, and the source rocks and genetic types remain unclear. Using multivariate statistical analysis, researchers can comprehensively examine the interrelationships among multiple correlated variables, which is particularly suitable for large-scale data mining and regional oil-oil and oil-source analysis. In this study, based on the biomarker parameter index system, hierarchical cluster analysis (HCA) and principal component analysis (PCA), common methods in multivariate statistical analysis, were applied for oil-oil and oil-source correlation of crude oil from multiple layers in the Miaoxi area. Three types of crude oil were detected. Type Ⅰ crude oil are characterized by a low C23TT/C30H ratio with relatively low maturity. It may be derived from a freshwater lacustrine reducing environment with abundant input of terrigenous organic matter. This type of crude oil shows a strong correlation with the source rocks in the first and second members of the Shahejie Formation in the eastern sag of the Huanghekou Depression. Type Ⅱ crude oil is at a mature stage and features lower C23TT/C30H and G/C30H ratios compared to Type Ⅰ, but with slightly higher Pr/Ph, sterane/hopane, and C19TT/C23TT ratios. These features also indicate a freshwater lacustrine environment with terrestrial organic matter input. It is inferred that Type Ⅱ oil is mainly sourced from the third member of the Shahejie Formation, with contributions from source rocks in both the eastern sag of the Huanghekou Depression and the southern sag of the Miaoxi Depression. Type Ⅲ crude oil is at a mature stage, exhibiting a wide distribution range in multiple biomarker parameters, including ETR[(C28TT+C29TT)/(C28TT+C29TT+ Ts)], G/C30H, C23TT/C21TT, Pr/Ph, C23TT/C30H C24Te/C26TT, C27/C29 regular sterane, and 4-methyl sterane/ C29 regular sterane. These variations reflect heterogeneity in the depositional environment of oil source rocks and organic matter types. It can be concluded that type Ⅲ crude oil is mixed-source oil, likely derived from the third and fourth members of the Shahejie Formation. Alternating least squares analysis results indicated that Type Ⅲ crude oil is mainly derived from the source rocks in the fourth member of the Shahejie Formation, with a contribution rate of 85% to 93%, while the contribution from the third member is only 7% to 15%.

     

  • All authors declare no relevant conflict of interests.
    The study was designed and examined by TANG Youjun, FU Tianyi, and TANG Guomin. The experimental operation and data organization were completed by FU Tianyi and SUN Peng. The figures were drawn and revised by YANG Haifeng and WANG Feilong. All authors have read the final version of the paper and consented to its submission.
  • loading
  • [1]
    邹艳荣, 王遥平, 詹兆文. 油气地球化学计量学: 基础与应用[M]. 北京: 科学出版社, 2021.

    ZOU Yanrong, WANG Yaoping, ZHAN Zhaowen. Petroleum geochemometrics: fundamentals and applications[M]. Beijing: Science Press, 2021.
    [2]
    BARTH T, ANDRESEN B, IDEN K, et al. Modelling source rock production potentials for short-chain organic acids and CO2: a multivariate approach[J]. Organic Geochemistry, 1996, 25(8): 427-438.
    [3]
    CLAYTON J L, SWETLAND P J. Petroleum generation and migration in Denver Basin[J]. AAPG Bulletin, 1980, 64(10): 1613-1633.
    [4]
    褚小立, 陈瀑, 许育鹏, 等. 化学计量学方法在石油分析中的研究与应用进展[J]. 石油学报(石油加工), 2017, 33(6): 1029-1038. doi: 10.3969/j.issn.1001-8719.2017.06.001

    CHU Xiaoli, CHEN Pu, XU Yupeng, et al. Research and application progress of chemometrics in petroleum analysis[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(6): 1029-1038. doi: 10.3969/j.issn.1001-8719.2017.06.001
    [5]
    彭伟, 黄华, 杜学斌, 等. 基于多元统计方法的油气成藏关键因素筛选与分析: 以江陵凹陷新沟嘴组岩性油藏为例[J]. 石油实验地质, 2019, 41(2): 295-302. doi: 10.11781/sysydz201902295

    PENG Wei, HUANG Hua, DU Xuebin, et al. Analysis of main controls of stratigraphic reservoirs in Xingouzui Formation of Jiangling Sag based on a multivariate statistical method[J]. Petroleum Geology and Experiment, 2019, 41(2): 295-302. doi: 10.11781/sysydz201902295
    [6]
    PETERS K E, FRASER T H, AMRIS W, et al. Geochemistry of crude oils from eastern Indonesia[J]. AAPG Bulletin, 1999, 83(12): 1927-1942.
    [7]
    王遥平, 邹艳荣, 史健婷, 等. 化学计量学在油-油和油-源对比中的应用现状及展望[J]. 天然气地球科学, 2018, 29(4): 452-467.

    WANG Yaoping, ZOU Yanrong, SHI Jianting, et al. The application of chemometrics in oil-oil and oil-source rock correlations: current situation and future prospect[J]. Natural Gas Geoscience, 2018, 29(4): 452-467.
    [8]
    ØYGARD K, GRAHL-NIELSEN O, ULVØEN S. Oil/oil correlation by aid of chemometrics[J]. Organic Geochemistry, 1984, 6: 561-567.
    [9]
    PETERS K E, RAMOS L S, ZUMBERGE J E, et al. Circum-arctic petroleum systems identified using decision-tree chemometrics[J]. AAPG Bulletin, 2007, 91(6): 877-913.
    [10]
    阎寒. 聚类分析在油源对比研究中的应用[J]. 石化技术, 2016, 23(6): 65.

    YAN Han. Application of cluster analysis in oil and source rock correlation[J]. Petrochemical Industry technology, 2016, 23(6): 65.
    [11]
    殷爱贞, 赵世彩. 基于主成分分析法的油气勘探项目效益研究[J]. 价值工程, 2010, 29(2): 20-21.

    YIN Aizhen, ZHAO Shicai. Study on the economic evaluation of oil-gas exploration based on principal component analysis[J]. Value Engineering, 2010, 29(2): 20-21.
    [12]
    王飞龙, 徐长贵, 张参, 等. 庙西南洼-黄河口东洼优质烃源岩成因机理与勘探潜力[C]//第九届渤海湾油气田勘探开发技术研讨会. 东营: 中国石油学会, 2017.

    WANG Feilong, XU Changgui, ZHANG Can, et al. Genesis mechanism and exploration potential of high-quality hydrocarbon source rocks in the southwest depression of Maowei Depression and eastern depression of Huanghekou[C]. Dongying: China Petroleum Society, 2017.
    [13]
    薛永安, 王飞龙, 汤国民, 等. 渤海海域页岩油气地质条件与勘探前景[J]. 石油与天然气地质, 2020, 41(4): 696-709.

    XUE Yong'an, WANG Feilong, TANG Guomin, et al. Geological condition and exploration prospect of shale oil and gas in the Bohai Sea[J]. Oil & Gas Geology, 2020, 41(4): 696-709.
    [14]
    王烨. 渤海湾盆地黄河口东部洼陷烃源岩生烃潜力评价[D]. 北京: 中国地质大学(北京), 2017.

    WANG Ye. Hydrocarbon-generation potential valuation in Yellow River Mouth East Sag of Bohai Bay Basin[D]. Beijing: China University of Geosciences (Beijing), 2017.
    [15]
    邓运华, 李秀芬. 蓬莱19-3油田的地质特征及启示[J]. 中国石油勘探, 2001, 6(1): 68-71.

    DENG Yunhua, LI Xiufen. The geological characters and enlightenment of Penglai 19-3 oilfield[J]. China Petroleum Exploration, 2001, 6(1): 68-71.
    [16]
    郭太现, 刘春成, 吕洪志, 等. 蓬莱19-3油田地质特征[J]. 石油勘探与开发, 2001, 28(2): 26-28.

    GUO Taixian, LIU Chuncheng, LV Hongzhi, et al. Geological characteristics and hydrocarbon accumulation pattern of Penglai 19-3 oil field[J]. Petroleum Exploration and Development, 2001, 28(2): 26-28.
    [17]
    郭永华, 周心怀, 凌艳玺, 等. 渤海海域蓬莱19-3油田油气成藏特征新认识[J]. 石油与天然气地质, 2011, 32(3): 327-332.

    GUO Yonghua, ZHOU Xinhuai, LING Yanxi, et al. New understandings of hydrocarbon accumulation in Penglai 19-3 oilfield, the Bohai waters[J]. Oil & Gas Geology, 2011, 32(3): 327-332.
    [18]
    王昕, 高坤顺, 王玉秀, 等. 庙西南凸起勘探发现与油气成藏条件分析[J]. 特种油气藏, 2013, 20(2): 16-19.

    WANG Xin, GAO Kunshun, WANG Yuxiu, et al. Exploration discoveries and hydrocarbon accumulation conditions in the Miaoxinan Uplift[J]. Special Oil & Gas Reservoirs, 2013, 20(2): 16-19.
    [19]
    崔海忠, 王飞龙, 王清斌, 等. 蓬莱20-2油田原油地球化学特征与油源分析[J]. 石油地质与工程, 2019, 33(6): 47-52.

    CUI Haizhong, WANG Feilong, WANG Qingbin, et al. Geochemical characteristics and oil source analysis of crude oil in Penglai 20-2 oilfield[J]. Petroleum Geology and Engineering, 2019, 33(6): 47-52.
    [20]
    岳军培, 刘朋波, 王广源, 等. 渤海蓬莱20-2油田原油物性差异及成因[J]. 成都理工大学学报(自然科学版), 2021, 48(1): 63-71.

    YUE Junpei, LIU Pengbo, WANG Guangyuan, et al. Difference of physical properties and genesis of crude oil in Penglai 20-2 oilfield, Bohai Sea, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2021, 48(1): 63-71.
    [21]
    刘丹丹, 汤国民, 王飞龙. 渤海海域东部凹陷烃源岩特征及油源分析[J]. 西安石油大学学报(自然科学版), 2020, 35(1): 9-17.

    LIU Dandan, TANG Guomin, WANG Feilong. Characteristics of hydrocarbon source rocks and analysis of oil source in eastern sag of Bohai Sea area[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2020, 35(1): 9-17.
    [22]
    赵野, 杨海风, 黄振, 等. 渤海海域庙西南洼陷走滑构造特征及其对油气成藏的控制作用[J]. 油气地质与采收率, 2020, 27(4): 35-44.

    ZHAO Ye, YANG Haifeng, HUANG Zhen, et al. Strike-slip structural characteristics and its controlling effect on hydrocarbon accumulation in Miaoxinan Sag, Bohai Sea[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 35-44.
    [23]
    黄雷, 周心怀, 刘池洋, 等. 渤海海域新生代盆地演化的重要转折期: 证据及区域动力学分析[J]. 中国科学(地球科学), 2012, 42(6): 893-904.

    HUANG Lei, ZHOU Xinhuai, LIU Chiyang, et al. The important turning points during evolution of Cenozoic basin offshore the Bohai Sea: evidence and regional dynamics analysis[J]. Science China (Earth Sciences), 2012, 55(3): 476-487.
    [24]
    张宝, 王冠民, 付尧, 等. 渤海湾盆地庙西南洼古近纪沟谷特征及对近源碎屑沉积的控制[J]. 海洋地质前沿, 2017, 33(12): 37-45.

    ZHANG Bao, WANG Guanmin, FU Yao, et al. Paleogene valley system and its control on proximal clastic deposits in the southern sub-sag of Miaoxi Sag, Bohai Bay Basin[J]. Marine Geology Frontiers, 2017, 33(12): 37-45.
    [25]
    孙哲, 于海波, 彭靖淞, 等. 渤海湾盆地庙西中南洼围区原油成因类型及分布主控因素[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1665-1677.

    SUN Zhe, YU Haibo, PENG Jingsong, et al. Genetic types and main controlling factors of crude oil distribution in South-Central Miaoxi Depression of Bohai Bay Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(6): 1665-1677.
    [26]
    许婷, 侯读杰, 曹冰. 东海盆地西湖凹陷凝析油和轻质油生源母质剖析[J]. 地球化学, 2015, 44(3): 289-300.

    XU Ting, HOU Dujie, CAO Bing. Study of precursors for condensates and light oils in Xihu Sag of East China Sea Basin[J]. Geochemica, 2015, 44(3): 289-300.
    [27]
    卢双舫, 张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008.

    LU Shuangfang, ZHANG Min. Petroleum geochemistry[M]. Beijing: Petroleum Industry Press, 2008.
    [28]
    张立平, 黄第藩, 廖志勤. 伽马蜡烷: 水体分层的地球化学标志[J]. 沉积学报, 1999, 17(1): 136-140.

    ZHANG Liping, HUANG Difan, LIAO Zhiqin. Gammacerane: geochemical indicator of water column stratification[J]. Acta Sedimentologica Sinica, 1999, 17(1): 136-140.
    [29]
    田金强, 邹华耀, 徐长贵, 等. ETR在严重生物降解油油源对比中的应用: 以辽东湾地区JX1-1油田为例[J]. 石油天然气学报, 2011, 33(7): 19-23.

    TIAN Jinqiang, ZOU Huayao, XU Changgui, et al. Application of ETR in oil-source correlation for severely biodegradaed crude oil: by taking JX1-1 oilfield for example[J]. Journal of Oil and Gas Technology, 2017, 33(7): 19-23.
    [30]
    HUANG W Y, MEINSCHEIN W G. Sterols as ecological indicators[J]. Geochimica et Cosmochimica Acta, 1979, 43(5): 739-745.
    [31]
    包建平, 张功成, 朱俊章, 等. 渤中凹陷原油生物标志物特征与成因类型划分[J]. 中国海上油气(地质), 2002, 16(1): 12-19.

    BAO Jianping, ZHANG Gongcheng, ZHU Junzhang, et al. Biomarker composition and origin classification of crude oil in Bozhong Sag, Bohai Sea[J]. China Offshore Oil and Gas (Geology), 2002, 16(1): 12-19.
    [32]
    PETERS K E, SNEDDEN J W, SULAEMAN A, et al. A new geochemical-sequence stratigraphic model for the Mahakam Delta and Makassar Slope, Kalimantan, Indonesia[J]. AAPG Bulletin, 2000, 84(1): 12-44.
    [33]
    魏志彬, 张大江, 张传禄, 等. 甲基二苯并噻吩分布指数(MDBI)作为烃源岩成熟度标尺的探讨[J]. 地球化学, 2001, 30(3): 242-247.

    WEI Zhibin, ZHANG Dajiang, ZHANG Chuanlu, et al. Methyldibenzothiophenes distribution index as a tool for maturity assessments of source rocks[J]. Geochimica, 2001, 30(3): 242-247.
    [34]
    冯伟平, 王飞宇, 王宗秀, 等. 乌兰花凹陷原油特征及成因[J]. 地质力学学报, 2020, 26(6): 932-940.

    FENG Weiping, WANG Feiyu, WANG Zongxiu, et al. Characteristics and origin of crude oils in the Wulanhua Sag[J]. Journal of Geomechanics, 2020, 26(6): 932-940.
    [35]
    TIAN Jingqiang, HAO Fang, ZHOU Xinhuai, et al. Distribution, controlling factors, and oil-source correlation of biodegraded oils in the Bohai offshore area, Bohai Bay Basin, China[J]. AAPG Bulletin, 2017, 101(3): 361-386.
    [36]
    周姗姗, 李友川, 杨树春, 等. 判别分析油源对比方法及应用: 以渤海湾盆地渤中凹陷为例[J]. 中国海上油气, 2023, 35(5): 35-46.

    ZHOU Shanshan, LI Youchuan, YANG Shuchun, et al. Discriminant analysis-based oil-source correlation method and application: a case study of Bozhong Depression in Bohai Bay Basin[J]. China Offshore Oil and Gas, 2023, 35(5): 35-46.
    [37]
    HAO Feng, ZHOU Xinhuai, ZHU Yangming, et al. Mechanisms of petroleum accumulation in the Bozhong sub-basin, Bohai Bay Basin, China. Part 1: origin and occurrence of crude oils[J]. Marine and Petroleum Geology, 2009, 26(8): 1528-1542.
    [38]
    WANG Qi, HAO Fang, XU Changgui, et al. Geochemical characterization of QHD29 oils on the eastern margin of Shijiutuo Uplift, Bohai Sea, China: insights from biomarker and stable carbon isotope analysis[J]. Marine and Petroleum Geology, 2015, 64: 266-275
    [39]
    MOLDOWAN J M, SEIFERT W K, GALLEGOS E J. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. AAPG Bulletin, 1985, 69(8): 1255-1268.
    [40]
    李亚杰. 多元统计分析[M]. 北京: 北京邮电大学出版社, 2018.

    LI Yajie. Multivariate statistical analysis[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2018.
    [41]
    潘春花. 基于主成分分析的任务定价模型研究[J]. 通讯世界, 2024, 31(10): 190-192.

    PAN Chunhua. Research on task pricing model based on principal component analysis[J]. Telecom World, 2024, 31(10): 190-192.
    [42]
    陶国亮, 秦建中, 腾格尔, 等. 塔河油田混源油地球化学及多元数理统计学对比研究[J]. 高校地质学报, 2010, 16(4): 527-538.

    TAO Guoliang, QIN Jianzhong, TENGGER, et al. Comparative study of geochemistry and multivariate data analysis on mixed oils accumulated in Ordovician reservoir in Tahe oilfield, Tarim Basin, NW China[J]. Geological Journal of China Universities, 2010, 16(4): 527-538.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (37) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return