Citation: | ZHANG Hongfei, JIAO Kun, WANG Jiayu, XU Ning, MA Lijun, LIU Lanfeng, WU Yunjun, DENG Bin, WU Juan, YE Yuehao, GUAN Quanzhong, WANGZHOU Xiangxin, ZHANG Congke. Influence of non-thermal maturity factors on laser Raman spectroscopy of highly to overmature shale: a case study of Lower Paleozoic marine shale in southern Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 895-903. doi: 10.11781/sysydz2025040895 |
[1] |
HENRY D G, JARVIS I, GILLMORE G, et al. Assessing low-maturity organic matter in shales using Raman spectroscopy: effects of sample preparation and operating procedure[J]. International Journal of Coal Geology, 2018, 191: 135-151.
|
[2] |
HENRY D G, JARVIS I, GILLMORE G, et al. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology[J]. Earth-Science Reviews, 2019, 198: 102936.
|
[3] |
HENRY D G, JARVIS I, GILLMORE G, et al. A rapid method for determining organic matter maturity using Raman spectroscopy: application to Carboniferous organic-rich mudstones and coals[J]. International Journal of Coal Geology, 2019, 203: 87-98.
|
[4] |
HOU Yuguang, ZHANG Kunpeng, WANG Furong, et al. Structural evolution of organic matter and implications for graphitization in over-mature marine shales, south China[J]. Marine and Petroleum Geology, 2019, 109: 304-316.
|
[5] |
MI Jingkui, HE Kun, FAN Junjia, et al. Thermal maturity determination for oil prone organic matter based on the Raman spectra of artificial matured samples[J]. Vibrational Spectroscopy, 2019, 104: 102940.
|
[6] |
刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241.
LIU Dehan H, XIAO Xianming, TIAN Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1285-1298.
|
[7] |
ZUO Zhaoxi, CAO Jian, WANG Xiaolin, et al. Characterizing maturity of reservoir pyrobitumen with strong anisotropy: a calibration between reflectance and laser Raman spectral parameters[J]. AAPG Bulletin, 2022, 106(7): 1373-1401.
|
[8] |
王晔. 四川盆地下古生界页岩成熟度表征和成熟过程研究[D]. 北京: 中国石油大学, 2019.
WANG Ye. Thermal maturity and maturity history of the Lower Paleozoic shale in Sichuan Basin[D]. Beijing: China University of Petroleum, 2019.
|
[9] |
TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics, 1970, 53(3): 1126-1130.
|
[10] |
BENY-BASSEZ C, ROUZAUD J N. Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy[J]. Scanning Electron Microscopy, 1985, 1985(1): 119-132.
|
[11] |
WOPENKA B, PASTERIS J D. Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy[J]. American Mineralogist, 1993, 78(5/6): 533-557.
|
[12] |
JEHLI KA J, BENY C. First and second order Raman spectra of natural highly carbonified organic compounds from metamorphic rocks[J]. Journal of Molecular Structure, 1999, 480-481: 541-545.
|
[13] |
BEYSSAC O, GOFFÉ B, PETITET J P, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2267-2276.
|
[14] |
KELEMEN S R, FANG H L. Maturity trends in Raman spectra from kerogen and coal[J]. Energy & Fuels, 2001, 15(3): 653-658.
|
[15] |
KHATIBI S, OSTADHASSAN M, TUSCHEL D, et al. Raman spectroscopy to study thermal maturity and elastic modulus of kerogen[J]. International Journal of Coal Geology, 2018, 185: 103-118.
|
[16] |
KHATIBI S, OSTADHASSAN M, TUSCHEL D, et al. Evaluating molecular evolution of kerogen by Raman spectroscopy: correlation with optical microscopy and rock-eval pyrolysis[J]. Energies, 2018, 11(6): 1406.
|
[17] |
KHATIBI S, AGHAJANPOUR A. Raman spectroscopy: an analytical tool for evaluating organic matter[J]. Journal of Oil Gas and Petrochemical Sciences, 2018, 1(1): 28-33.
|
[18] |
王茂林, 肖贤明, 魏强, 等. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J]. 天然气地球科学, 2015, 26(9): 1712-1718.
WANG Maolin, XIAO Xianming, WEI Qiang, et al. Thermal maturation of solid bitumen in shale as revealed by Raman spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9): 1712-1718.
|
[19] |
ZHOU Qin, XIAO Xianming, PAN Lei, et al. The relationship between micro-Raman spectral parameters and reflectance of solid bitumen[J]. International Journal of Coal Geology, 2014, 121: 19-25.
|
[20] |
肖贤明, 周秦, 程鹏, 等. 高—过成熟海相页岩中矿物—有机质复合体(MOA)的显微激光拉曼光谱特征作为成熟度指标的意义[J]. 中国科学: 地球科学, 2020, 50(9): 1228-1241.
XIAO Xianming, ZHOU Qin, CHENG Peng, et al. Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities[J]. Scientia Sinica Terrae, 2020, 50(9): 1228-1241.
|
[21] |
BEYSSAC O, GOFFÉ B, CHOPIN C, et al. Raman spectra of carbonaceous material in metasediments: a new geothermometer[J]. Journal of Metamorphic Geology, 2002, 20(9): 859-871.
|
[22] |
WILKINS R W T, BOUDOU R, SHERWOOD N, et al. Thermal maturity evaluation from inertinites by Raman spectroscopy: the 'RaMM' technique[J]. International Journal of Coal Geology, 2014, 128-129: 143-152.
|
[23] |
SAUERER B, CRADDOCK P R, ALJOHANI M D, et al. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation[J]. International Journal of Coal Geology, 2017, 173: 150-157.
|
[24] |
SCHITO A, ROMANO C, CORRADO S, et al. Diagenetic thermal evolution of organic matter by Raman spectroscopy[J]. Organic Geochemistry, 2017, 106: 57-67.
|
[25] |
KANEKI S, HIRONO T, MUKOYOSHI H, et al. Organochemical characteristics of carbonaceous materials as indicators of heat recorded on an ancient plate‐subduction fault[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(7): 2855-2868.
|
[26] |
LIU Jiang, LI Haibing, ZHANG Jinjiang, et al. Origin and formation of carbonaceous material veins in the 2008 Wenchuan earthquake fault zone[J]. Earth, Planets and Space, 2016, 68: 19.
|
[27] |
SCHMIDT J S, HINRICHS R, ARAUJO C V. Maturity estimation of phytoclasts in strew mounts by micro-Raman spectroscopy[J]. International Journal of Coal Geology, 2017, 173: 1-8.
|
[28] |
KANEKI S, HIRONO T. Kinetic effect of heating rate on the thermal maturity of carbonaceous material as an indicator of frictional heat during earthquakes[J]. Earth, Planets and Space, 2018, 70(1): 92.
|
[29] |
MUKOYOSHI H, KANEKI S, HIRONO T. Slip parameters on major thrusts at a convergent plate boundary: regional heterogeneity of potential slip distance at the shallow portion of the subducting plate[J]. Earth, Planets and Space, 2018, 70(1): 36.
|
[30] |
王义凤, 谢林丰, 李剑, 等. 基于激光拉曼和傅里叶变换质谱实验的高—过成熟有机质特征评价[J]. 天然气工业, 2023, 43(11): 83-99.
WANG Yifeng, XIE Linfeng, LI Jian, et al. Characteristics evaluation of high-over mature organic matter based on laser Raman and Fourier transform mass spectrometry experiments[J]. Natural Gas Industry, 2023, 43(11): 83-99.
|
[31] |
KOUKETSU Y, SHIMIZU I, WANG Yu, et al. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks[J]. Tectonophysics, 2017, 699: 129-145.
|
[32] |
NAKAMURA Y, YOSHINO T, SATISH-KUMAR M. An experimental kinetic study on the structural evolution of natural carbonaceous material to graphite[J]. American Mineralogist, 2017, 102(1): 135-148.
|
[33] |
BALUDIKAY B K, FRANÇOIS C, SFORNA M C, et al. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia)[J]. International Journal of Coal Geology, 2018, 191: 80-94.
|
[34] |
GOLUBEV Y A, MARTIROSYAN O V, KUZMIN D V, et al. Transformations of natural bitumens of different degrees of metamorphism at a low vacuum heating in the temperature range of 400~1 000 ℃[J]. Journal of Petroleum Science and Engineering, 2019, 173: 315-325.
|
[35] |
SONG Yu, JIANG Bo, QU Meijun. Macromolecular evolution and structural defects in tectonically deformed coals[J]. Fuel, 2019, 236: 1432-1445.
|
[36] |
MENG Kang, ZHANG Tongwei, SHAO Deyong, et al. Assessment of thermal maturity in Lower Cambrian organic-rich shale in south China using integrated optical reflectance and Raman spectroscopy of pyrobitumen[J]. Marine and Petroleum Geology, 2024, 160: 106609.
|
[37] |
LÜNSDORF N K. Raman spectroscopy of dispersed vitrinite—methodical aspects and correlation with reflectance[J]. International Journal of Coal Geology, 2016, 153: 75-86.
|
[38] |
李国辉, 苑保国, 朱华, 等. 四川盆地超级富气成因探讨[J]. 天然气工业, 2022, 42(5): 1-10.
LI Guohui, YUAN Baoguo, ZHU Hua, et al. Genesis of super-rich gas in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(5): 1-10.
|
[39] |
WANG Xiaolin, WANG Xiaoyu, CHOU I M, et al. Properties of lithium under hydrothermal conditions revealed by in situ Raman spectroscopic characterization of Li2O-SO3-H2O (D2O) systems at temperatures up to 420 ℃[J]. Chemical Geology, 2017, 451: 104-115.
|
[40] |
QIU Ye, ZHANG Rongqing, CHOU I M, et al. Boron-rich ore-forming fluids in hydrothermal W-Sn deposits from South China: insights from in situ Raman spectroscopic characterization of fluid inclusions[J]. Ore Geology Reviews, 2021, 132: 104048.
|
[41] |
高志伟. 激光拉曼光谱在有机显微组分分析中的应用研究[D]. 北京: 中国石油大学(北京), 2022.
GAO Zhiwei. Application of laser Raman spectroscopy in organic maceral analysis[D]. Beijing: China University of Petroleum, 2022.
|