Volume 47 Issue 4
Jul.  2025
Turn off MathJax
Article Contents
MA Yingying, PENG Zebo, CHEN Jingzhi, WU Fei, NIE Xin, LIAO Zhongshu, ZHANG Gong. Super-resolution reconstruction technology for full-diameter core nuclear magnetic resonance scanning data: a global non-negative least squares-based approach[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 904-912. doi: 10.11781/sysydz2025040904
Citation: MA Yingying, PENG Zebo, CHEN Jingzhi, WU Fei, NIE Xin, LIAO Zhongshu, ZHANG Gong. Super-resolution reconstruction technology for full-diameter core nuclear magnetic resonance scanning data: a global non-negative least squares-based approach[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 904-912. doi: 10.11781/sysydz2025040904

Super-resolution reconstruction technology for full-diameter core nuclear magnetic resonance scanning data: a global non-negative least squares-based approach

doi: 10.11781/sysydz2025040904
  • Received Date: 2024-07-03
  • Rev Recd Date: 2025-06-08
  • Publish Date: 2025-07-28
  • Full-diameter core nuclear magnetic resonance (NMR) analysis is one of the key exploration and analysis techniques in unconventional oil and gas exploration. It provides continuous high-resolution information on rock core porosity, permeability, and fluid saturation. However, due to its large measurement sensitivity area, signals from different positions overlap, resulting in a significantly lower vertical resolution compared to instrument sampling. This limitation hinders its effectiveness in detecting thin interbedded reservoir. To improve the vertical resolution of the full-diameter core NMR measurements, the measured data were modeled as the convolution of the instrument's sensitivity area function and the core's real signal. High-resolution reconstruction of the original signal was achieved using global non-negative least squares, without changing the existing instrument structure or measurement mode. The feasibility of this method was validated through numerical simulations, physical experiments, and actual data analysis. Practical applications show that the high-resolution processed NMR porosity from well logging aligns more closely with gas-filled porosity. This method significantly improves the vertical resolution of full-diameter core NMR measurements, enhancing the detection capabilities for thin interbedded reservoirs.

     

  • All authors declare no relevant conflict of interests.
    The study design was contributed by MA Yingying, ZHANG Gong, CHEN Jingzhi, and LIAO Zhongshu. The experimental work was completed by LIAO Zhongshu and WU Fei. The manuscript was drafted and revised by ZHANG Gong and LIAO Zhongshu. Data processing was carried out by NIE Xin. The figures were completed by PENG Zebo. All authors have read the final version of the paper and consented to its submission.
  • loading
  • [1]
    刘国强. 非常规油气勘探测井评价技术的挑战与对策[J]. 石油勘探与开发, 2021, 48(5): 891-902.

    LIU Guoqiang. Challenges and countermeasures of log evaluation in unconventional petroleum exploration[J]. Petroleum Exploration and Development, 2021, 48(5): 891-902.
    [2]
    赖锦, 李红斌, 张梅, 等. 非常规油气时代测井地质学研究进展[J]. 古地理学报, 2023, 25(5): 1118-1138.

    LAI Jin, LI Hongbin, ZHANG Mei, et al. Advances in well logging geology in the era of unconventional hydrocarbon resources[J]. Journal of Palaeogeography(Chinese Edition), 2023, 25(5): 1118-1138.
    [3]
    王鸣川, 王燃, 岳慧, 等. 页岩油微观渗流机理研究进展[J]. 石油实验地质, 2024, 46(1): 98-110. doi: 10.11781/sysydz202401098

    WANG Mingchuan, WANG Ran, YUE Hui, et al. Research progress of microscopic percolation mechanism of shale oil[J]. Petroleum Geology & Experiment, 2024, 46(1): 98-110. doi: 10.11781/sysydz202401098
    [4]
    刘国强, 赵先然, 袁超, 等. 陆相页岩油宏观结构测井评价及其甜点优选[J]. 中国石油勘探, 2023, 28(1): 120-134.

    LIU Guoqiang, ZHAO Xianran, YUAN Chao, et al. Logging evaluation of macro-structure of continental shale oil reservoir and sweet spots selection[J]. China Petroleum Exploration, 2023, 28(1): 120-134.
    [5]
    孙颖. 核磁共振在页岩储层参数评价中的应用综述[J]. 地球物理学进展, 2023, 38(1): 254-270.

    SUN Ying. Review of the application of nuclear magnetic resonance in the evaluation of shale reservoir parameters[J]. Progress in Geophysics, 2023, 38(1): 254-270.
    [6]
    陈龙川, 张兆谦, 郑建东, 等. 核磁共振测井在古龙页岩油评价中的应用[J]. 测井技术, 2024, 48(1): 110-116.

    CHEN Longchuan, ZHANG Zhaoqian, ZHENG Jiandong, et al. Application of NMR logging in the evaluation of Gulong shale oil[J]. Well Logging Technology, 2024, 48(1): 110-116.
    [7]
    刘继龙, 谢然红, 卫弘媛, 等. 基于核磁共振T2分布的页岩油流体组分含量计算方法[J]. 测井技术, 2023, 47(5): 533-541.

    LIU Jilong, XIE Ranhong, WEI Hongyuan, et al. Calculation method of shale oil fluid component content based on nuclear magnetic resonance T2 distribution[J]. Well Logging Technology, 2023, 47(5): 533-541.
    [8]
    丁绍卿, 郭和坤, 刘卫, 等. 核磁共振岩样分析技术在储层评价中的应用[J]. 大庆石油地质与开发, 2006, 25(6): 22-23.

    DING Shaoqing, GUO Hekun, LIU Wei, et al. Application of NMR rock sample analysis technique in reservoir evaluation[J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(6): 22-23.
    [9]
    孙中良, 李志明, 申宝剑, 等. 核磁共振技术在页岩油气储层评价中的应用[J]. 石油实验地质, 2022, 44(5): 930-940. doi: 10.11781/sysydz202205930

    SUN Zhongliang, LI Zhiming, SHEN Baojian, et al. NMR technology in reservoir evaluation for shale oil and gas[J]. Petroleum Geology & Experiment, 2022, 44(5): 930-940. doi: 10.11781/sysydz202205930
    [10]
    李宁, 冯周, 武宏亮, 等. 中国陆相页岩油测井评价技术方法新进展[J]. 石油学报, 2023, 44(1): 28-44.

    LI Ning, FENG Zhou, WU Hongliang, et al. New advances in methods and technologies for well logging evaluation of continental shale oil in China[J]. Acta Petrolei Sinica, 2023, 44(1): 28-44.
    [11]
    章海宁, 韩雪, 覃莹瑶, 等. 薄互层页岩油核磁共振测井响应特征: 以准噶尔盆地二叠系风城组为例[J]. 科学技术与工程, 2023, 23(16): 6752-6759.

    ZHANG Haining, HAN Xue, QIN Yingyao, et al. NMR logging response characteristics of thin interbedded shale oil: an example from the Permian Fengcheng Formation in the Junggar Basin[J]. Science Technology and Engineering, 2023, 23(16): 6752-6759.
    [12]
    吉尔吉佐夫, 侯学理, 穆尔扎卡耶夫. 移动式全直径岩心核磁共振测量仪在俄罗斯超稠油地层评价中的应用[J]. 测井技术, 2017, 41(5): 506-511.

    KIRGIZOV D I, HOU Xueli, MURZAKAEV V M. Application of complex nuclear magnetic resonance measurements to super-vicious oil deposits in Russian Republic of Tatarstan[J]. Well Logging Technology, 2017, 41(5): 506-511.
    [13]
    ARNOLD J, CLAUSER C, PECHNIG R, et al. Porosity and permeability from mobile NMR core-scanning[J]. Petrophysics, 2006, 47(4): 306-314.
    [14]
    闫伟林, 张兆谦, 陈龙川, 等. 基于核磁共振技术的古龙页岩含油饱和度评价新方法[J]. 大庆石油地质与开发, 2021, 40(5): 78-86.

    YAN Weilin, ZHANG Zhaoqian, CHEN Longchuan, et al. New evaluating method of oil saturation in Gulong shale based on NMR technique[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(5): 78-86.
    [15]
    石玉江, 蔡文渊, 刘国强, 等. 页岩油储层孔隙流体的全直径岩心二维核磁共振图谱特征及评价方法[J]. 中国石油勘探, 2023, 28(3): 132-144.

    SHI Yujiang, CAI Wenyuan, LIU Guoqiang, et al. Full diameter core 2D NMR spectrum characteristics of pore fluid in shale oil reservoir and evaluation method[J]. China Petroleum Exploration, 2023, 28(3): 132-144.
    [16]
    肖立志, 罗嗣慧, 龙志豪. 井场核磁共振技术及其应用的发展历程与展望[J]. 石油钻探技术, 2023, 51(4): 140-148.

    XIAO Lizhi, LUO Sihui, LONG Zhihao. The course of development and the future of wellsite NMR technologies and their applications[J]. Petroleum Drilling Techniques, 2023, 51(4): 140-148.
    [17]
    YAN Weichao, SUN Jianmeng, CHENG Zhigang, et al. Petrophysical characterization of tight oil formations using 1D and 2D NMR[J]. Fuel, 2017, 206: 89-98.
    [18]
    LU Shuangfang, HUANG Wenbiao, CHEN Fangwen, et al. Classification and evaluation criteria of shale oil and gas resources: discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 268-276.
    [19]
    HU Falong, ZHOU Cancan, LI Chaoliu, et al. Water spectrum method of NMR logging for identifying fluids[J]. Petroleum Exploration and Development, 2016, 43(2): 268-276.
    [20]
    YUE Linwei, SHEN Huanfeng, LI Jie, et al. Image super-resolution: the techniques, applications, and future[J]. Signal Processing, 2016, 128: 389-408.
    [21]
    YI Yang, YANG Ke, ZENG Shan, et al. Super-resolution reconstruction of LF NMR image based on DDPM for fruit non-destructive testing[J]. Journal of Food Composition and Analysis, 2024, 131: 106219.
    [22]
    CHEN Songhua, LI Lilong, SHAO Wei, et al. Systematic optimization approach for high-resolution NMR logging[C]//SPWLA 59th Annual Logging Symposium. London, UK: SPWLA, 2018.
    [23]
    MUKHAMETDINOVA A, HABINA-SKRZYNIARZ I, KAZAK A, et al. NMR relaxometry interpretation of source rock liquid saturation: a holistic approach[J]. Marine and Petroleum Geology, 2021, 132: 105165.
    [24]
    刘忠华, 李霞, 赵文智, 等. 核磁共振增强扩散方法在复杂储集层流体识别中的应用[J]. 石油勘探与开发, 2010, 37(6): 703-708.

    LIU Zhonghua, LI Xia, ZHAO Wenzhi, et al. Enhanced diffusion theory of nuclear magnetic resonance (NMR) and its application to fluid identification of complex reservoirs[J]. Petroleum Exploration and Development, 2010, 37(6): 703-708.
    [25]
    李鹏举, 张智鹏, 姜大鹏. 核磁共振测井流体识别方法综述[J]. 测井技术, 2011, 35(5): 396-401.

    LI Pengju, ZHANG Zhipeng, JIANG Dapeng. Review on fluid identification methods with NMR logging[J]. Well Logging Technology, 2011, 35(5): 396-401.
    [26]
    NGUYEN N, HUANG H, ORAINTARA S, et al. Mass spectrometry data processing using zero-crossing lines in multi-scale of Gaussian derivative wavelet[J]. Bioinformatics, 2010, 26(18): 1659-1665.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (14) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return