Citation: | YANG Yang, ZHANG Dongxiao, WANG Hao, LUN Zengmin, GAO Zhiwei, WANG Rui, HU Wei. Influencing mechanisms of solid-phase asphaltene precipitation in crude oil of Yongjin Oil Field, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 930-940. doi: 10.11781/sysydz2025040930 |
[1] |
MOSCHOPEDIS S E, FRYER J F, SPEIGHT J G. Investigation of asphaltene molecular weights[J]. Fuel, 1976, 55(3): 227-232.
|
[2] |
张志荣, 陶国亮, SNOWDON Lloyd R, 等. 沥青质大分子的结构及其测定方法综述[J]. 石油实验地质, 2023, 45(5): 963-972. doi: 10.11781/sysydz202305963
ZHANG Zhirong, TAO Guoliang, SNOWDON Lloyd R, et al. Review on molecular structures of asphaltene macromolecules and instrumental analytical approaches[J]. Petroleum Geology & Experiment, 2023, 45(5): 963-972. doi: 10.11781/sysydz202305963
|
[3] |
刘华, 孟祥雨, 任新成, 等. 准噶尔盆地盆1井西凹陷侏罗系原油成因与来源[J]. 中国石油大学学报(自然科学版), 2023, 47(1): 25-37.
LIU Hua, MENG Xiangyu, REN Xincheng, et al. Origin and source of Jurassic crude oil in well Pen-1 western Depression, Junggar Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(1): 25-37.
|
[4] |
MULLINS O C, SHEU E Y. Molecular structure and aggregation of asphaltenes and petroleomics[C]//SPE Annual Technical Conference and Exhibition. Dallas: SPE, 2005.
|
[5] |
HIRSCHBERG A, DEJONG L N J, SCHIPPER B A, et al. Influence of temperature and pressure on asphaltene flocculation[J]. Society of Petroleum Engineers Journal, 1984, 24(3): 283-293.
|
[6] |
ALKAFEEF S F. An investigation of the stability of colloidal asphaltene in petroleum reservoirs[C]//SPE International Symposium on Oilfield Chemistry. Houston: SPE, 2001.
|
[7] |
李平平, 魏广鲁, 徐祖新, 等. 四川盆地元坝气田长兴组古原油的运移方向与聚集特征[J]. 地学前缘, 2023, 30(6): 277-288.
LI Pingping, WEI Guanglu, XU Zuxin, et al. Migration direction and accumulation characteristics of paleo-oil in the Changxing Formation in Yuanba Gas Field, Sichuan Basin[J]. Earth Science Frontiers, 2023, 30(6): 277-288.
|
[8] |
廉培庆, 马翠玉, 高敏, 等. 沥青质沉积特征及控制策略研究进展[J]. 科学技术与工程, 2015, 15(16): 101-107.
LIAN Peiqing, MA Cuiyu, GAO Min, et al. Recent research progress of asphaltene deposition characteristics and control strategies[J]. Science Technology and Engineering, 2015, 15(16): 101-107.
|
[9] |
王艳婷. 塔河油田井筒沥青质分散解堵剂性能评价方法研究[D]. 北京: 中国石油大学(北京), 2017.
WANG Yanting. Study on performance evaluation method of asphaltene removers in Tahe Oilfield wellbores[D]. Beijing: China University of Petroleum (Beijing), 2017.
|
[10] |
李斌, 赵星星, 邬光辉, 等. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质, 2023, 44(2): 308-320.
LI Bin, ZHAO Xingxing, WU Guanghui, et al. Differential hydrocarbon accumulation model of the Ordovician in Tazhong Ⅱ block, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(2): 308-320.
|
[11] |
朱光有, 杨海军, 朱永峰, 等. 塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J]. 岩石学报, 2011, 27(3): 827-844.
ZHU Guangyou, YANG Haijun, ZHU Yongfeng, et al. Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Hanilcatam area, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(3): 827-844.
|
[12] |
杨鹏. 原油沥青质沉积堵塞预测与防治技术研究[D]. 成都: 西南石油大学, 2014.
YANG Peng. Research on prediction, prevention, and control technologies for crude oil asphaltene deposition and blockage[D]. Chengdu: SouthWest Petroleum University, 2014.
|
[13] |
邓晓娟, 李勇, 龙国清, 等. 缝洞型油藏原始油水界面刻画新方法: 以哈拉哈塘油田为例[J]. 油气地质与采收率, 2023, 30(3): 69-76.
DENG Xiaojuan, LI Yong, LONG Guoqing, et al. A new method for characterizing original oil-water interface of fracture-cavity reservoirs: a case study of Halahatang Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(3): 69-76.
|
[14] |
左亮, 能源, 黄少英, 等. 哈拉哈塘地区超深层走滑断裂构造变形特征及其石油地质意义[J]. 现代地质, 2023, 37(2): 270-282.
ZUO Liang, NENG Yuan, HUANG Shaoyin, et al. Deformation characteristics of ultra-deep glide faults in the Halahatang area and their petroleum geological significance[J]. Geoscience, 2023, 37(2): 270-282.
|
[15] |
刘磊, 曹畅, 程汝镇, 等. 顺北沥青质分子结构和析出沉积规律研究[J]. 复杂油气藏, 2020, 13(4): 86-91.
LIU Lei, CAO Chang, CHENG Ruzhen, et al. Study on molecular structure and precipitation rules of Shunbei asphaltenes[J]. Complex Hydrocarbon Reservoirs, 2020, 13(4): 86-91.
|
[16] |
刘显, 席斌斌, 曹婷婷, 等. 超深层油气相态转化过程及其控制因素: 来自原油可视化热模拟实验的启示[J]. 现代地质, 2024, 38(5): 1370-1382.
LIU Xian, XI Binbin, CAO Tingting, et al. Phase transformation mechanisms and controlling factors of the ultra-deep oil and gas: insights from visual thermal simulation of crude oil[J] Geoscience, 2024, 38(5): 1370-1382.
|
[17] |
段太忠, 张文彪, 何治亮, 等. 塔里木盆地顺北油田超深断溶体深度学习地质建模方法[J]. 石油与天然气地质, 2023, 44(1): 203-212.
DUAN Taizhong, ZHANG Wenbiao, HE Zhiliang, et al. Deep learning-based geological modeling of ultra-deep fault-karst reservoirs in Shunbei oilfield, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1): 203-212.
|
[18] |
王志坚. 深层—超深层异常高压油藏工艺技术对策[J]. 油气地质与采收率, 2020, 27(5): 126-133.
WANG Zhijian. Technological strategies for deep and ultra-deep reservoirs with abnormally high pressure[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 126-133.
|
[19] |
赵永强, 宋振响, 王斌, 等. 准噶尔盆地油气资源潜力与中国石化常规—非常规油气一体化勘探策略[J]. 石油实验地质, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872
ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and SINOPEC's integrated exploration strategy for conventional and unconventional petroleum[J]. Petroleum Geology & Experiment, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872
|
[20] |
盖姗姗, 王子振, 刘浩杰, 等. 永进油田致密储集层岩石力学参数剖面构建及应用[J]. 新疆石油地质, 2024, 45(3): 362-370.
GAI Shanshan, WANG Zizhen, LIU Haojie, et al. Establishment and application of rock mechanical parameter profile to tight reservoirs in Yongjin Oilfield[J]. Xinjiang Petroleum Geology, 2024, 45(3): 362-370.
|
[21] |
杜金虎, 支东明, 李建忠, 等. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望[J]. 石油勘探与开发, 2019, 46(2): 205-215.
DU Jinhu, ZHI Dongming, LI Jianzhong, et al. Major breakthrough of well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(2): 205-215.
|
[22] |
吴宝成, 熊启勇, 熊瑞颖, 等. 南缘高温高压油井堵塞成因及防治[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 112-119.
WU Baocheng, XIONG Qiyong, XIONG Ruiying, et al. Cause of plugging and prevention technology of high temperature and high pressure oil well in Nanyuan[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 112-119.
|
[23] |
田山川, 甘仁忠, 肖琳, 等. 准噶尔盆地南缘异常高压泥岩段地层压力预测方法[J]. 特种油气藏, 2024, 31(5): 20-30.
TIAN Shanchuan, GAN Renzhong, XIAO Lin, et al. Method for predicting formation pressure in anomalously high-pressure mudstone section at the southern margin of Junggar Basin[J]. Special Oil & Gas Reservoirs, 2024, 31(5): 20-30.
|
[24] |
LEONTARITIS K J, MANSOORI G A. Asphaltene flocculation during oil production and processing: a thermodynamic colloidal model[C]//SPE International Symposium on Oilfield Chemistry. San Antonio: SPE, 1987.
|
[25] |
高志彬. 注CO2过程中沥青沉淀对储层伤害的定量评价研究[D]. 北京: 中国地质大学(北京), 2014.
GAO Zhibin. Quantitative evaluation of formation damage due to asphaltene deposition when CO2 flooding[D]. Beijing: China University of Geosciences (Beijing), 2014.
|
[26] |
SULAIMON A A, GOVINDASAMY K. New correlation for predicting asphaltene deposition[C]//SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Nusa Dua: SPE, 2015.
|
[27] |
PENG Dingyu, ROBINSON D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64.
|
[28] |
KONTOGEORGIS G M, FOLAS G K. Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories[M]. New York: John Wiley & Sons, Ltd. 2010.
|
[29] |
LI Zhidong, FIROOZABADI A. Modeling asphaltene precipitation by n-Alkanes from heavy oils and bitumens using cubic-plus-association equation of state[J]. Energy & Fuels, 2010, 24(2): 1106-1113.
|
[30] |
ZHANG Xiaohong, PEDROSA N, MOORWOOD T. Modeling asphaltene phase behavior: comparison of methods for flow assurance studies[J]. Energy & Fuels, 2012, 26(5): 2611-2620.
|
[31] |
YANG Yang, ZHANG Dongxiao, WANG Hao, et al. A new method to simulate and evaluate asphaltene plugging risk in oil wells[J]. SPE Journal, 2025, 30(2): 896-912.
|