Volume 47 Issue 4
Jul.  2025
Turn off MathJax
Article Contents
YANG Yang, ZHANG Dongxiao, WANG Hao, LUN Zengmin, GAO Zhiwei, WANG Rui, HU Wei. Influencing mechanisms of solid-phase asphaltene precipitation in crude oil of Yongjin Oil Field, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 930-940. doi: 10.11781/sysydz2025040930
Citation: YANG Yang, ZHANG Dongxiao, WANG Hao, LUN Zengmin, GAO Zhiwei, WANG Rui, HU Wei. Influencing mechanisms of solid-phase asphaltene precipitation in crude oil of Yongjin Oil Field, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(4): 930-940. doi: 10.11781/sysydz2025040930

Influencing mechanisms of solid-phase asphaltene precipitation in crude oil of Yongjin Oil Field, Junggar Basin

doi: 10.11781/sysydz2025040930
  • Received Date: 2025-03-17
  • Rev Recd Date: 2025-05-19
  • Publish Date: 2025-07-28
  • Solid-phase asphaltene precipitation and deposition, commonly occurring during reservoir development, lead to reservoir damage and production well blockage, seriously affecting crude oil exploitation and reducing economic efficiency. Solid-phase asphaltene precipitation is affected by the properties of crude oil and temperature/pressure condition, and is a thermodynamic issue involving complex gas-liquid-solid three-phase behavior. This study aims to investigate the solid-state precipitation pattern and its influencing mechanisms of asphaltenes in crude oil from the Yongjin Oil Field, aiming to provide theoretical support for the rational prevention of asphaltene deposition during reservoir development. High-asphaltene-content crude oil from the Yongjin Oil Field was selected as the research object. Crude oil composition analysis, pressure-volume-temperature (PVT) high-pressure physical property analysis, gas injection, and solid-phase asphaltene precipitation experiments were conducted to reveal the precipitation pattern of asphaltenes under different conditions. Based on the cubic plus association (CPA) equation of state (EoS), a three-phase equilibrium calculation model for the oil-gas-asphaltene system was established. The model was fitted to experimental results and used to further simulate the precipitation pattern of asphaltenes under complex conditions, clarifying the effects and their influencing mechanisms of fluid composition, temperature, pressure, and production well operation strategies on solid-phase asphaltene precipitation. The results showed that fluid composition and temperature/pressure conditions were the intrinsic factors and external conditions, respectively, influencing asphaltene precipitation in the system, and the like-dissolves-like principle could fully explain the mechanism of complex phase behavior changes in asphaltenes. After gas injection, the fluid composition was altered, and its influence on crude oil and asphaltene phase behavior was primarily determined by the miscibility of injected gas with crude oil and the extraction and stripping of intermediate components. Production well operation strategies affected asphaltene precipitation by controlling temperature and pressure variations during crude oil flow, thereby determining the location of precipitation. Risk assessment of asphaltene deposition and blockage requires comprehensive analysis integrating reservoir conditions, wellbore structure, and production dynamics.

     

  • All authors declare no relevant conflict of interests.
    The experimental study was conducted by YANG Yang, LUN Zengmin, GAO Zhiwei, and HU Wei. The theoretical characterization was completed by YANG Yang and WANG Rui. The manuscript was drafted and revised by YANG Yang, ZHANG Dongxiao, and WANG Hao. All authors have read the final version of the paper and consented to its submission.
  • loading
  • [1]
    MOSCHOPEDIS S E, FRYER J F, SPEIGHT J G. Investigation of asphaltene molecular weights[J]. Fuel, 1976, 55(3): 227-232.
    [2]
    张志荣, 陶国亮, SNOWDON Lloyd R, 等. 沥青质大分子的结构及其测定方法综述[J]. 石油实验地质, 2023, 45(5): 963-972. doi: 10.11781/sysydz202305963

    ZHANG Zhirong, TAO Guoliang, SNOWDON Lloyd R, et al. Review on molecular structures of asphaltene macromolecules and instrumental analytical approaches[J]. Petroleum Geology & Experiment, 2023, 45(5): 963-972. doi: 10.11781/sysydz202305963
    [3]
    刘华, 孟祥雨, 任新成, 等. 准噶尔盆地盆1井西凹陷侏罗系原油成因与来源[J]. 中国石油大学学报(自然科学版), 2023, 47(1): 25-37.

    LIU Hua, MENG Xiangyu, REN Xincheng, et al. Origin and source of Jurassic crude oil in well Pen-1 western Depression, Junggar Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(1): 25-37.
    [4]
    MULLINS O C, SHEU E Y. Molecular structure and aggregation of asphaltenes and petroleomics[C]//SPE Annual Technical Conference and Exhibition. Dallas: SPE, 2005.
    [5]
    HIRSCHBERG A, DEJONG L N J, SCHIPPER B A, et al. Influence of temperature and pressure on asphaltene flocculation[J]. Society of Petroleum Engineers Journal, 1984, 24(3): 283-293.
    [6]
    ALKAFEEF S F. An investigation of the stability of colloidal asphaltene in petroleum reservoirs[C]//SPE International Symposium on Oilfield Chemistry. Houston: SPE, 2001.
    [7]
    李平平, 魏广鲁, 徐祖新, 等. 四川盆地元坝气田长兴组古原油的运移方向与聚集特征[J]. 地学前缘, 2023, 30(6): 277-288.

    LI Pingping, WEI Guanglu, XU Zuxin, et al. Migration direction and accumulation characteristics of paleo-oil in the Changxing Formation in Yuanba Gas Field, Sichuan Basin[J]. Earth Science Frontiers, 2023, 30(6): 277-288.
    [8]
    廉培庆, 马翠玉, 高敏, 等. 沥青质沉积特征及控制策略研究进展[J]. 科学技术与工程, 2015, 15(16): 101-107.

    LIAN Peiqing, MA Cuiyu, GAO Min, et al. Recent research progress of asphaltene deposition characteristics and control strategies[J]. Science Technology and Engineering, 2015, 15(16): 101-107.
    [9]
    王艳婷. 塔河油田井筒沥青质分散解堵剂性能评价方法研究[D]. 北京: 中国石油大学(北京), 2017.

    WANG Yanting. Study on performance evaluation method of asphaltene removers in Tahe Oilfield wellbores[D]. Beijing: China University of Petroleum (Beijing), 2017.
    [10]
    李斌, 赵星星, 邬光辉, 等. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质, 2023, 44(2): 308-320.

    LI Bin, ZHAO Xingxing, WU Guanghui, et al. Differential hydrocarbon accumulation model of the Ordovician in Tazhong Ⅱ block, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(2): 308-320.
    [11]
    朱光有, 杨海军, 朱永峰, 等. 塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J]. 岩石学报, 2011, 27(3): 827-844.

    ZHU Guangyou, YANG Haijun, ZHU Yongfeng, et al. Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Hanilcatam area, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(3): 827-844.
    [12]
    杨鹏. 原油沥青质沉积堵塞预测与防治技术研究[D]. 成都: 西南石油大学, 2014.

    YANG Peng. Research on prediction, prevention, and control technologies for crude oil asphaltene deposition and blockage[D]. Chengdu: SouthWest Petroleum University, 2014.
    [13]
    邓晓娟, 李勇, 龙国清, 等. 缝洞型油藏原始油水界面刻画新方法: 以哈拉哈塘油田为例[J]. 油气地质与采收率, 2023, 30(3): 69-76.

    DENG Xiaojuan, LI Yong, LONG Guoqing, et al. A new method for characterizing original oil-water interface of fracture-cavity reservoirs: a case study of Halahatang Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(3): 69-76.
    [14]
    左亮, 能源, 黄少英, 等. 哈拉哈塘地区超深层走滑断裂构造变形特征及其石油地质意义[J]. 现代地质, 2023, 37(2): 270-282.

    ZUO Liang, NENG Yuan, HUANG Shaoyin, et al. Deformation characteristics of ultra-deep glide faults in the Halahatang area and their petroleum geological significance[J]. Geoscience, 2023, 37(2): 270-282.
    [15]
    刘磊, 曹畅, 程汝镇, 等. 顺北沥青质分子结构和析出沉积规律研究[J]. 复杂油气藏, 2020, 13(4): 86-91.

    LIU Lei, CAO Chang, CHENG Ruzhen, et al. Study on molecular structure and precipitation rules of Shunbei asphaltenes[J]. Complex Hydrocarbon Reservoirs, 2020, 13(4): 86-91.
    [16]
    刘显, 席斌斌, 曹婷婷, 等. 超深层油气相态转化过程及其控制因素: 来自原油可视化热模拟实验的启示[J]. 现代地质, 2024, 38(5): 1370-1382.

    LIU Xian, XI Binbin, CAO Tingting, et al. Phase transformation mechanisms and controlling factors of the ultra-deep oil and gas: insights from visual thermal simulation of crude oil[J] Geoscience, 2024, 38(5): 1370-1382.
    [17]
    段太忠, 张文彪, 何治亮, 等. 塔里木盆地顺北油田超深断溶体深度学习地质建模方法[J]. 石油与天然气地质, 2023, 44(1): 203-212.

    DUAN Taizhong, ZHANG Wenbiao, HE Zhiliang, et al. Deep learning-based geological modeling of ultra-deep fault-karst reservoirs in Shunbei oilfield, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1): 203-212.
    [18]
    王志坚. 深层—超深层异常高压油藏工艺技术对策[J]. 油气地质与采收率, 2020, 27(5): 126-133.

    WANG Zhijian. Technological strategies for deep and ultra-deep reservoirs with abnormally high pressure[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 126-133.
    [19]
    赵永强, 宋振响, 王斌, 等. 准噶尔盆地油气资源潜力与中国石化常规—非常规油气一体化勘探策略[J]. 石油实验地质, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872

    ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and SINOPEC's integrated exploration strategy for conventional and unconventional petroleum[J]. Petroleum Geology & Experiment, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872
    [20]
    盖姗姗, 王子振, 刘浩杰, 等. 永进油田致密储集层岩石力学参数剖面构建及应用[J]. 新疆石油地质, 2024, 45(3): 362-370.

    GAI Shanshan, WANG Zizhen, LIU Haojie, et al. Establishment and application of rock mechanical parameter profile to tight reservoirs in Yongjin Oilfield[J]. Xinjiang Petroleum Geology, 2024, 45(3): 362-370.
    [21]
    杜金虎, 支东明, 李建忠, 等. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望[J]. 石油勘探与开发, 2019, 46(2): 205-215.

    DU Jinhu, ZHI Dongming, LI Jianzhong, et al. Major breakthrough of well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(2): 205-215.
    [22]
    吴宝成, 熊启勇, 熊瑞颖, 等. 南缘高温高压油井堵塞成因及防治[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 112-119.

    WU Baocheng, XIONG Qiyong, XIONG Ruiying, et al. Cause of plugging and prevention technology of high temperature and high pressure oil well in Nanyuan[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 112-119.
    [23]
    田山川, 甘仁忠, 肖琳, 等. 准噶尔盆地南缘异常高压泥岩段地层压力预测方法[J]. 特种油气藏, 2024, 31(5): 20-30.

    TIAN Shanchuan, GAN Renzhong, XIAO Lin, et al. Method for predicting formation pressure in anomalously high-pressure mudstone section at the southern margin of Junggar Basin[J]. Special Oil & Gas Reservoirs, 2024, 31(5): 20-30.
    [24]
    LEONTARITIS K J, MANSOORI G A. Asphaltene flocculation during oil production and processing: a thermodynamic colloidal model[C]//SPE International Symposium on Oilfield Chemistry. San Antonio: SPE, 1987.
    [25]
    高志彬. 注CO2过程中沥青沉淀对储层伤害的定量评价研究[D]. 北京: 中国地质大学(北京), 2014.

    GAO Zhibin. Quantitative evaluation of formation damage due to asphaltene deposition when CO2 flooding[D]. Beijing: China University of Geosciences (Beijing), 2014.
    [26]
    SULAIMON A A, GOVINDASAMY K. New correlation for predicting asphaltene deposition[C]//SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Nusa Dua: SPE, 2015.
    [27]
    PENG Dingyu, ROBINSON D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64.
    [28]
    KONTOGEORGIS G M, FOLAS G K. Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories[M]. New York: John Wiley & Sons, Ltd. 2010.
    [29]
    LI Zhidong, FIROOZABADI A. Modeling asphaltene precipitation by n-Alkanes from heavy oils and bitumens using cubic-plus-association equation of state[J]. Energy & Fuels, 2010, 24(2): 1106-1113.
    [30]
    ZHANG Xiaohong, PEDROSA N, MOORWOOD T. Modeling asphaltene phase behavior: comparison of methods for flow assurance studies[J]. Energy & Fuels, 2012, 26(5): 2611-2620.
    [31]
    YANG Yang, ZHANG Dongxiao, WANG Hao, et al. A new method to simulate and evaluate asphaltene plugging risk in oil wells[J]. SPE Journal, 2025, 30(2): 896-912.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Article Metrics

    Article views (28) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return