Please wait a minute...
石油实验地质  2020, Vol. 42 Issue (2): 241-247    DOI: 10.11781/sysydz202002241
盆地·油藏 本期目录 | 过刊浏览 |
哥伦比亚普图马约次盆晚中生代—新生代古今大地热流值
孟庆强1, 宋立军2, 袁炳强2
1. 中国石化 石油勘探开发研究院, 北京 100083;
2. 西安石油大学 地球科学与工程学院, 西安 710065
Heat-flow value of Late Mesozoic to Cenozoic in Putumayo Sub-Basin, Republic of Colombia
MENG Qingqiang1, SONG Lijun2, YUAN Bingqiang2
1. Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China;
2. Oil Resources Faculty, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
全文:  PDF(925 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 普图马约次盆地经历了多期构造演化,其大地热流史也经历了长期、复杂的演化过程。利用地质背景约束、古温标正演约束等多种方法,系统地确定了普图马约次盆自白垩纪以来各时期的大地热流值:白垩纪大地热流值为64 mW/m2;古新世大地热流值为95 mW/m2;渐新世末期大地热流值为38 mW/m2;上新世大地热流值处于120~190.00 mW/m2之间,平均155.00 mW/m2,且具有由东到西大地热流值增加的特征;今大地热流值为55 mW/m2
关键词 晚中生代新生代大地热流普图马约次盆哥伦比亚    
Abstract:The heat-flow history of the Putumayo Sub-Basin has undergone a long-term and complex evolutionary process from the Late Mesozoic to the Cenozoic due to multiphases of tectonic evolution. The regional geologic background and the forward modeling of paleo-temperature were applied to determine the heat-flow value during different stages ever since the Cretaceous. The heat-flow value was 64 mW/m2 in the Cretaceous, 95 mW/m2 in the Paleocene, 38 mW/m2 at the end of Oligocene, 120 to 190 mW/m2 (increasing from east to west and averaging 155 mW/m2) in the Pliocene, and 55 mW/m2 at present.
Key wordsLate Mesozoic    Cenozoic    heat flow    Putumayo Sub-Basin    Republic of Colombia
收稿日期: 2019-10-15      出版日期: 2020-03-21
ZTFLH:  TE121.1  
基金资助:国家自然科学基金项目(41102072,41872164,41102075)联合资助。
作者简介: 孟庆强(1978-),男,博士,高级工程师,从事油气成藏机理与分布规律研究。E-mail:mengqq.syky@sinopec.com。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟庆强
宋立军
袁炳强
引用本文:

孟庆强, 宋立军, 袁炳强 .哥伦比亚普图马约次盆晚中生代—新生代古今大地热流值[J].石油实验地质,2020,42(2):241-247.
MENG Qingqiang, SONG Lijun, YUAN Bingqiang .Heat-flow value of Late Mesozoic to Cenozoic in Putumayo Sub-Basin, Republic of Colombia[J].Petroleum Geology & Experiment,2020,42(2):241-247.

链接本文:

http://www.sysydz.net/CN/10.11781/sysydz202002241      或      http://www.sysydz.net/CN/Y2020/V42/I2/241

[1] 郝春艳,刘绍文,王华玉,等.全球大地热流研究进展[J].地质科学,2014,49(3):754-770. HAO Chunyan,LIU Shaowen,WANG Huayu,et al.Global heat flow:an overview over past 20 years[J].Chinese Journal of Geology,2014,49(3):754-770.
[2] 李宗星, 高俊, 郑策, 等. 柴达木盆地现今大地热流与晚古生代以来构造-热演化[J]. 地球物理学报, 2015, 58(10):3687-3705. LI Zongxing,GAO Jun,ZHENG Ce,et al.Present-day heat flow and tectonic-thermal evolution since the Late Paleozoic time of the Qaidam Basin[J].Chinese Journal of Geophysics,2015,58(10):3687-3705.
[3] 宋颖睿,侯宇光,刘宇坤,等.黔南坳陷下石炭统摆佐组暗色页岩热演化与生烃史研究[J].石油实验地质,2018,40(2):226-232. SONG Yingrui,HOU Yuguang,LIU Yukun,et al.Thermal evolution and hydrocarbon generation histories of black shale in Lower Carboniferous Baizuo Formation,Southern Guizhou Depression[J].Petroleum Geology & Experiment,2018,40(2):226-232.
[4] 马中振,陈和平,谢寅符,等.南美Putomayo-Oriente-Maranon盆地成藏组合划分与资源潜力评价[J].石油勘探与开发,2017,44(2):225-234. MA Zhongzhen,CHEN Heping,XIE Yinfu,et al.Division and resources evaluation of hydrocarbon plays in Putomayo-Oriente-Maranon Basin,South America[J].Petroleum Exploration and Development,2017,44(2):225-234.
[5] 刘静静,邬长武,丁峰.南大西洋两岸含盐盆地类型与油气分布规律[J].石油实验地质,2018,40(3):372-380. LIU Jingjing,WU Changwu,DING Feng.Basin types and hydrocarbon distribution in salt basins in the South Atlantic[J].Petroleum Geology & Experiment,2018,40(3):372-380.
[6] GONÇALVES F T T,MORA C A,CÓRDOBA F,et al.Petroleum generation and migration in the Putumayo Basin,Colombia:insights from an organic geochemistry and basin modeling study in the foothills[J].Marine and Petroleum Geology,2002,19(6):711-725.
[7] 任怀建,杨振武,卢小新,等.普图马约盆地Neme段特稠油储层含油饱和度评价方法[J].新疆石油天然气,2017,13(2):6-9. REN Huaijian,YANG Zhenwu,LU Xiaoxin,et al.Oil saturation evaluation method of Neme extremely viscous crude reservoir in Putumayo Basin[J].Xinjiang Oil & Gas,2017,13(2):6-9.
[8] 雷晓东,胡圣标,李娟,等.北京平原区西北部大地热流与深部地温分布特征[J].地球物理学报,2018,61(9):3735-3748. LEI Xiaodong,HU Shengbiao,LI Juan,et al.Characteristics of heat flow and geothermal distribution in the northwest Beijing Plain[J].Chinese Journal of Geophysics,2018,61(9):3735-3748.
[9] 张富有.南阳盆地地温梯度与大地热流值特征[J].地下水,2016,38(4):1-2. ZHANG Fuyou.Geothermal gradient and heat flow characteristics of Nanyang Basin[J].Groundwater,2016,38(4):1-2.
[10] 汪集旸,汪缉安.辽河裂谷盆地地幔热流[J].地球物理学报,1986,29(5):450-459. WANG Jiyang,WANG Ji'an.Mantle heat flow of Liaohe Rifted Basin in North China[J].Acta Geophysica Sinca,1986,29(5):450-459.
[11] 刘绍文,王良书,李成,等.塔里木盆地岩石圈热-流变学结构和新生代热体制[J].地质学报,2006,80(3):344-350. LIU Shaowen,WANG Liangshu,LI Cheng,et al.Ithospheric thermo-rheological structure and Cenozoic thermal regime in the Tarim Basin,Northwest China[J].Acta Geologica Sinica,2006,80(3):344-350.
[12] 陈增智,柳广弟,郝石生.多构造期古老盆地古热流史模型及其应用[J].石油大学学报(自然科学版),1999,23(1):17-19. CHEN Zengzhi,LIU Guangdi,HAO Shisheng.Development and application of a model for geothermal history of sedimentary basin with multi-tectonic events[J].Journal of the University of Petroleum,China,1999,23(1):17-19.
[13] 刘进.盆地基底古热流求取方法[J].大庆石油地质与开发,2006,25(6):16-17. LIU Jin.Basin basement palaeo-heat flow calculation method[J].Petroleum Geology & Oilfield Development in Daqing,2006,25(6):16-17.
[14] 庞雄奇,陈章明,陈发景.非线性变化古热流回剥模拟计算方法探讨[J].大庆石油学院学报,1994,18(2):9-16. PANG Xiongqi,CHEN Zhangming,CHEN Fajing.An approach to modelling nonlinear change paleoheat flux by backstripping[J].Journal of Daqing Petroleum Institute,1994,18(2):9-16.
[15] 周中毅,潘长春.沉积盆地古地温测定方法及其应用[M].广州:广东科技出版社,1992. ZHOU Zhongyi,PAN Changchun.Paleotemperature analysis methods and their application in sedimentary basins[M].Guangzhou:Guangdong Science & Technology Press,1992.
[16] 施小斌,汪集旸,罗晓容.古温标重建沉积盆地热史的能力探讨[J].地球物理学报,2000,43(3):386-392. SHI Xiaobin,WANG Jiyang,LUO Xiaorong.Discussion on the abilities of thermal indicators in reconstructing thermal history of sedimentary basin[J].Chinese Journal of Geophysics,2000,43(3):386-392.
[17] CHIARADIA M,MVNTENER O,BEATE B.Enriched basaltic andesites from mid-crustal fractional crystallization,recharge,and assimilation (Pilavo Volcano,Western Cordillera of Ecuador)[J].Journal of Petrology,2011,52(6):1107-1141.
[18] BEST M G.Igneous and metamorphic petrology[M].2nd ed.Malden,MA:Blackwell Publishing,2003:278-280.
[19] 崔景伟,侯连华,朱如凯,等.鄂尔多斯盆地延长组长7页岩层段岩石热导率特征及启示[J].石油实验地质,2019,41(2):280-288. CUI Jingwei,HOU Lianhua,ZHU Rukai,et al.Thermal conductivity properties of rocks in the Chang 7 shale strata in the Ordos Basin and its implications for shale oil in situ development[J].Petroleum Geology & Experiment,2019,41(2):280-288.
[20] 程超,林海宇,蒋裕强,等.川南龙马溪组含气页岩热导率实验研究[J].石油实验地质,2019,41(2):289-294. CHENG Chao,LIN Haiyu,JIANG Yuqiang,et al.Thermal conductivity of gas-bearing shale of the Longmaxi Formation in the southern Sichuan[J].Petroleum Geology & Experiment,2019,41(2):289-294.
[21] 吴群,彭金宁.川东北地区埋藏史及热史分析:以普光2井为例[J].石油实验地质,2013,35(2):133-138. WU Qun,PENG Jinning.Burial and thermal histories of northeastern Sichuan Basin:a case study of well Puguang 2[J].Petroleum Geology & Experiment,2013,35(2):133-138.
[22] 赵军,曹强,付宪弟,等.基于米兰科维奇天文旋回恢复地层剥蚀厚度:以松辽盆地X油田青山口组为例[J].石油实验地质,2018,40(2):260-267. ZHAO Jun,CAO Qiang,FU Xiandi,et al.Recovery of denuded strata thickness based on Milankovitch Astronomical Cycles:a case study of Qingshankou Formation in X Oilfield,Songliao Basin[J].Petroleum Geology & Experiment,2018,40(2):260-267.
[23] FRIEDMAN G M,SANDERS J E.Principles of sedimentology[M].New York:Wiley,1978.
[24] 彭金宁,罗开平,刘光祥,等.四川盆地热演化异常成因及热场演化特征分析[J].石油实验地质,2018,40(5):605-612. PENG Jinning,LUO Kaiping,LIU Guangxiang,et al.Causes of abnormal thermal evolution and characteristics of thermal evolution in Sichuan Basin[J].Petroleum Geology & Experiment,2018,40(5):605-612.
[25] 冯禄,曾花森,王洪伟.岩浆侵入作用对不同成熟度烃源岩热演化的影响:以方正断陷和绥滨坳陷为例[J].石油实验地质,2018,40(5):724-729. FENG Lu,ZENG Huasen,WANG Hongwei.Impact of igneous intrusion on the thermal evolution of source rocks with different maturities:a case study of Fangzheng Fault Depression and Suibin Sag in north-eastern China[J].Petroleum Geology & Experiment,2018,40(5):724-729.
[26] ALLEN P A,ALLEN J R.Basin analysis:principles and application[M].Oxford,England:Blackwell Scientific Publications,1990:282-283.
[27] BRAD D W, JAMES C C, BRIAN K H, et al. Structural and hydrogeologic evolution of the Putumayo Basin and adjacent fold-thrust belt, Colombia[J]. AAPG Bulletin, 2015, 99(10):1893-1927.
[28] 巫建华,刘帅.大地构造学概论与中国大地构造学纲要[M].北京:地质出版社,2008. WU Jianhua,LIU Shuai.Introduction to tectonics and tectonics outline in China[M].Beijing:Geological Publishing House,2008.
[29] POLLACK H N,HUNTER S J,JOHNSON J R.Heat flow from the Earth's interior:analysis of the global data set[J].Reviews of Geophysics,1993,31(3):267-280.
[30] STOREY B C.The role of mantle plumes in continental breakup:case histories from Gondwanaland[J].Nature,1995,377(6547):301-308.
[31] CONDIE K C.Mantle plumes and their record in earth history[M].Cambridge:Cambridge University Press,2001:306.
[32] MCCOURT W J,ASPDEN J A,BROOK M.New geological and geochronological data from the Colombian Andes:continental growth by multiple accretion[J].Journal of the Geological Society,1984,141(5):831-845.
[1] 王琳霖, 于冬冬, 浮昀, 严敏. 柴达木盆地西部构造演化与差异变形特征及对油田水分布的控制[J]. 石油实验地质, 2020, 42(2): 186-192.
[2] 胡秋媛, 李理. 鲁西地区晚中生代—古近纪伸展构造的应力场数值模拟[J]. 石油实验地质, 2015, 37(2): 259-266.
[3] 姚洪生, 张勇, 蒋永平, 赵梓平. 苏北盆地溱潼凹陷新生代侵入岩蚀变带油藏地质特征[J]. 石油实验地质, 2014, 36(2): 153-159.
[4] 刘亚明, 张春雷. 哥伦比亚油气地质与勘探[J]. 石油实验地质, 2011, 33(3): 226-232.
[5] 江夏, 周荔青. 苏北盆地富油气凹陷形成与分布特征[J]. 石油实验地质, 2010, 32(4): 319-325.
[6] 徐旭辉, 黄泽光, 高长林, 张渝昌. 中国大陆中新生代变格运动及第一变格期盆地[J]. 石油实验地质, 2009, 31(2): 119-127.
[7] 易海, 钟广见, 马金凤. 台西南盆地新生代断裂特征与盆地演化[J]. 石油实验地质, 2007, 29(6): 560-564.
[8] 徐宏节, 黄泽光. 南华北中南部中新生代盆地演化与油气成藏分析[J]. 石油实验地质, 2007, 29(6): 541-544.
[9] 范小林, 翟常博, 邓模. 中新生代构造运动在南方海相油气勘探中的意义[J]. 石油实验地质, 2006, 28(6): 539-543.
[10] 张义楷, 周立发, 党犇, 孙伟. 鄂尔多斯盆地中新生代构造应力场与油气聚集[J]. 石油实验地质, 2006, 28(3): 215-219.
[11] 张淮, 周荔青, 李建青. 下扬子地区海相下组合油气勘探潜力分析[J]. 石油实验地质, 2006, 28(1): 15-20.
[12] 周荔青, 刘池阳. 中国新生代生物天然气藏的基本形成模式[J]. 石油实验地质, 2005, 27(1): 1-7.
[13] 陆黄生, 周荔青. 滇黔桂地区新生代盆地生物气成藏分区性[J]. 石油实验地质, 2004, 26(6): 525-530.
[14] 罗开平, 范小林. 河西走廊及邻区中新生代成盆背景与盆地原型[J]. 石油实验地质, 2004, 26(5): 432-436.
[15] 谢锐杰, 漆家福, 王永诗, 杨桥. 渤海湾盆地东营凹陷北部地区新生代构造演化特征研究[J]. 石油实验地质, 2004, 26(5): 427-431.