Volume 42 Issue 3
May  2020
Turn off MathJax
Article Contents
MA Zhongliang, SHEN Baojian, PAN Anyang, BORJIGIN Tenger, NING Chuanxiang, ZHENG Lunju. Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi formations, Sichuan Basin: implication from pyrolysis experiments[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428
Citation: MA Zhongliang, SHEN Baojian, PAN Anyang, BORJIGIN Tenger, NING Chuanxiang, ZHENG Lunju. Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi formations, Sichuan Basin: implication from pyrolysis experiments[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428

Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi formations, Sichuan Basin: implication from pyrolysis experiments

doi: 10.11781/sysydz202003428
  • Received Date: 2020-01-24
  • Rev Recd Date: 2020-04-17
  • Publish Date: 2020-05-28
  • The Wufeng-Longmaxi shale in the Sichuan Basin is the only stratum in China to realize commercial development of shale gas. There are some differences in shale gas generation and a lack of direct experimental evidence of the reasons for these differences. Hydrocarbon generation experiments using pyrolysis in a gold tube with low and medium maturity shale and graptolite of O3-S1 were carried out. Gas from remaining oil produced by hydrogen-rich and lipid-rich organic matter such as planktonic algae is the main contributor of shale gas in the Wufeng-Longmaxi formations. The oil generation ability of graptolite is poor, and it can produce gas during the high-maturity and over-mature stages, up to about 20% of the hydrogen-rich and lipid-rich organic matter such as algae. The lower layer of the Wufeng-Longmaxi shale in the Sichuan Basin is superior to the upper layer, which is mainly composed of graptolite, because of abundant hydrogen-rich and lipid-rich organic matter such as phytoplankton. Pure thermal evolution fractionation and the mixture of primary (from kerogen) and secondary (from oil) gas do not cause hydrocarbon gas isotopes to "reverse". Formation uplift, formation water, minerals, metals and other late transformation of hydrocarbons in shale gas may be an important cause of shale gas isotopic "inversion". Carbon isotope "inversion" may be more of a reflection of the later shale gas preservation process.

     

  • loading
  • [1]
    聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm

    NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm
    [2]
    郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm

    GUO Xusheng, LI Yuping, BORJIGEN T, et al. Hydrocarbon gene-ration and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm
    [3]
    JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068
    [4]
    GAI Haifeng, XIAO Xianming, CHENG Peng, et al. Gas generation of shale organic matter with different contents of residual oil based on a pyrolysis experiment[J]. Organic Geochemistry, 2015, 78: 69-78. doi: 10.1016/j.orggeochem.2014.11.001
    [5]
    腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组-龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm

    BORJIGIN T, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm
    [6]
    邱振, 邹才能, 李熙喆, 等. 论笔石对页岩气源储的贡献: 以华南地区五峰组-龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805002.htm

    QIU Zhen, ZOU Caineng, LI Xizhe, et al. Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale: a case study of the Wufeng-Longmaxi formations in South China[J]. Natural Gas Geoscience, 2018, 29(5): 606-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805002.htm
    [7]
    宋笛, 胥畅, 姚素平, 等. 笔石碎屑对页岩气生成和储集特性的影响[J]. 石油实验地质, 2019, 41(4): 540-547. doi: 10.11781/sysydz201904540

    SONG Di, XU Chang, YAO Suping, et al. Influence of graptolite debris on shale gas generation and accumulation[J]. Petroleum Geology & Experiment, 2019, 41(4): 540-547. doi: 10.11781/sysydz201904540
    [8]
    王勤, 钱门辉, 蒋启贵, 等. 中国南方海相烃源岩中笔石生烃能力研究[J]. 岩矿测试, 2017, 36(3): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201703008.htm

    WANG Qin, QIAN Menhui, JIANG Qigui, et al. A study on hydrocarbon generation capacity of graptolite in marine hydrocarbon source rocks in Southern China[J]. Rock and Mineral Analysis, 2017, 36(3): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201703008.htm
    [9]
    王亮, 宁波. 四川盆地海相页岩气碳同位素倒转成因[J]. 西安文理学院学报(自然科学版), 2020, 23(1): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJY202001019.htm

    WANG Liang, NING Bo. Cause of carbon isotope inversion of marine shale gas in Sichuan Basin[J]. Journal of Xi'an University(Natural Science Edition), 2020, 23(1): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJY202001019.htm
    [10]
    魏祥峰, 郭彤楼, 刘若冰. 涪陵页岩气田焦石坝地区页岩气地球化学特征及成因[J]. 天然气地球科学, 2016, 27(3): 539-548. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603022.htm

    WEI Xiangfeng, GUO Tonglou, LIU Ruobing. Geochemical features of shale gas and their genesis in Jiaoshiba block of Fuling Shale Gasfield, Chongqing[J]. Natural Gas Geoscience, 2016, 27(3): 539-548. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603022.htm
    [11]
    DAI Jinxing, ZOU Caineng, DONG Dazhong, et al. Geochemical characteristics of marine and terrestrial shale gas in China[J]. Marine and Petroleum Geology, 2016, 76: 443-463.
    [12]
    HAO Fang, ZOU Huayao. Cause of shale gas geochemical anomalies and mechanisms for gas enrichment and depletion in high-maturity shales[J]. Marine and Petroleum Geology, 2013, 44: 1-12.
    [13]
    XIA Xinyu, CHEN J, BRAUN R, et al. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J]. Chemical Geology, 2013, 339: 205-212.
    [14]
    王宁, 李荣西, 王香增, 等. 海陆过渡相页岩气形成热模拟实验研究[J]. 天然气地球科学, 2016, 27(1): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601023.htm

    WANG Ning, LI Rongxi, WANG Xiangzeng, et al. Pyrolytic study on the gas-generating process of transitional shale[J]. Natural Gas Geoscience, 2016, 27(1): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601023.htm
    [15]
    宋董军, 吴陈君, 陈科, 等. 海陆相泥页岩气体生成的半封闭模拟实验[J]. 地球科学, 2019, 44(11): 3639-3652. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911005.htm

    SONG Dongjun, WU Chenjun, CHEN Ke, et al. Gas generation from marine and terrestrial shales by semi-closed pyrolysis experiments[J]. Earth Science, 2019, 44(11): 3639-3652. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911005.htm
    [16]
    高栋臣, 郭超, 姜呈馥, 等. 鄂尔多斯盆地山西组低成熟度页岩生烃热模拟[J]. 石油实验地质, 2018, 40(3): 454-460. doi: 10.11781/sysydz201803454

    GAO Dongchen, GUO Chao, JIANG Chengfu, et al. Hydrocarbon generation simulation of low-maturity shale in Shanxi Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2018, 40(3): 454-460. doi: 10.11781/sysydz201803454
    [17]
    李剑, 马卫, 王义凤, 等. 腐泥型烃源岩生排烃模拟实验与全过程生烃演化模式[J]. 石油勘探与开发, 2018, 45(3): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803011.htm

    LI Jian, MA Wei, WANG Yifeng, et al. Modeling of the whole hydrocarbon-generating process of sapropelic source rock[J]. Petroleum Exploration and Development, 2018, 45(3): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803011.htm
    [18]
    张贺, 李雅君, 徐康宁, 等. 珠江口盆地恩平组烃源岩热压模拟实验及生烃条件[J]. 大庆石油地质与开发, 2018, 37(5): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201805006.htm

    ZHANG He, LI Yajun, XU Kangning, et al. Thermocompression simulation experiment and hydrocarbon generating condition of Enping-formation source rock in pearl river mouth basin[J]. Petroleum Geology and Oilfield Development in Daqing, 2018, 37(5): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201805006.htm
    [19]
    MORGA R, PAWLYTA M. Microstructure of graptolite periderm in Silurian gas shales of northern Poland[J]. International Journal of Coal Geology, 2018, 189: 1-7.
    [20]
    郑伦举, 秦建中, 张渠, 等. 中国海相不同类型原油与沥青生气潜力研究[J]. 地质学报, 2008, 82(3): 360-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200803010.htm

    ZHENG Lunju, QIN Jianzhong, ZHANG Qu, et al. Gas-generation potentiality of various marine crude oil and bitumen in China[J]. ActaGeologica Sinica, 2008, 82(3): 360-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200803010.htm
    [21]
    申宝剑, 仰云峰, 腾格尔, 等. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨: 以焦页1井五峰-龙马溪组为例[J]. 石油实验地质, 2016, 38(4): 480-488. doi: 10.11781/sysydz201604480

    SHEN Baojian, YANG Yunfeng, TENGER, et al. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure, Sichuan Basin: a case study of the Wufeng-Longmaxi formations in well Jiaoye1[J]. Petroleum Geology & Experiment, 2016, 38(4): 480-488. doi: 10.11781/sysydz201604480
    [22]
    李东晖, 刘光祥, 聂海宽, 等. 焦石坝背斜上部气层开发特征及影响因素[J]. 地球科学, 2019, 44(11): 3653-3661. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911006.htm

    LI Donghui, LIU Guangxiang, NIE Haikuan, et al. Development characteristics and influencing factors of upper gas reservoir in Jiaoshiba anticline[J]. Earth Science, 2019, 44(11): 3653-3661. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911006.htm
    [23]
    BURRUSS R C, LAUGHREY C D. Carbon and hydrogen isotopic reversals in deep basin gas: evidence for limits to the stability of hydrocarbons[J]. Organic Geochemistry, 2010, 41(12): 1285-1296.
    [24]
    杨平, 印峰, 余谦, 等. 四川盆地东南缘有机质演化异常与古地温场特征[J]. 天然气地球科学, 2015, 26(7): 1299-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507011.htm

    YANG Ping, YIN Feng, YU Qian, et al. Evolution anomaly of organic matter and characteristics of palaeogeothermal field in the southeast edge of Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1299-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507011.htm
    [25]
    席斌斌, 腾格尔, 俞凌杰, 等. 川东南页岩气储层脉体中包裹体古压力特征及其地质意义[J]. 石油实验地质, 2016, 38(4): 473-479. doi: 10.11781/sysydz201604473

    XI Binbin, TENGER, YU Lingjie, et al. Trapping pressure of fluid inclusions and its significance in shale gas reservoirs, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 473-479. doi: 10.11781/sysydz201604473
    [26]
    李文, 何生, 张柏桥, 等. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征[J]. 石油学报, 2018, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm

    LI Wen, HE Sheng, ZHANG Baiqiao, et al. Characteristics of paleo-temperature and paleo-pressure of fluid inclusions in shale composite veins of Longmaxi Formation at the western margin of Jiaoshiba anticline[J]. Acta Petrolei Sinica, 2018, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (483) PDF downloads(134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return