Volume 43 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
ZOU Yu, WANG Guojian, LU Li, ZHU Huaiping, LIU Guangxiang, YUAN Yusong, YANG Haiyuan, JIN Zhijun. Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 844-854. doi: 10.11781/sysydz202105844
Citation: ZOU Yu, WANG Guojian, LU Li, ZHU Huaiping, LIU Guangxiang, YUAN Yusong, YANG Haiyuan, JIN Zhijun. Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 844-854. doi: 10.11781/sysydz202105844

Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores

doi: 10.11781/sysydz202105844
  • Received Date: 2021-06-22
  • Rev Recd Date: 2021-08-04
  • Publish Date: 2021-09-28
  • Gas diffusion in nano-scale porous media of deeply burried shale includes bulk diffusion (Fick and Knudsen diffusions) and surface diffusion. To reveal the migration mechanism of this process, the influence of temperature and pressure on diffusion coefficient needs to be quantitatively evaluated. A case study was made with the Cambrian Niutitang Formation in the Maoping area, Zigui, western Hubei, South China. Gas diffusion was simulated by isobaric diffusion experiments under different temperature and pressure conditions. The results indicated that: (1) The diffusion coefficient DF decreases with increasing of pressure (when the pressure is higher than 30 MPa, DF tends to be constant), and increases with increasing of temperature; (2) In the high temperature-pressure setting, DF is affected significantly by pressure and generally tends to decrease. Moreover, the impacts of temperature, pressure, porosity and lithology were quantitatively calculated, and a mathematical model of gas diffusion was established, which had comparable results with simulation experiment. The following conclusions were thus drawn: (1)Higher temperature will cause stronger molecular kinetic energy, resulting in increasing bulk and surface diffusion coefficients, while higher pressure will slightly strengthen the Fick and surface diffusions, but significantly limit the Knudsen diffusion, and cause lower total diffusion coefficient; (2) Larger pore size leads to stronger bulk diffusion, but weaker surface diffusion. Finally, according to the studies of a specific research block, high pressure setting is conducive to the preservation of nano-scale porous gas reservoir in shale, while the uplift accompanied by pressure release is the main stage of shale gas loss.

     

  • loading
  • [1]
    邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm

    ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: on unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm
    [2]
    任俊豪, 任晓海, 宋海强, 等. 基于分子模拟的纳米孔内甲烷吸附与扩散特征[J]. 石油学报, 2020, 41(11): 1366-1375. doi: 10.7623/syxb202011006

    REN Junhao, REN Xiaohai, SONG Haiqiang, et al. Adsorption and diffusion characteristics of methane in nanopores based on molecular simulation[J]. Acta Petrolei Sinica, 2020, 41(11): 1366-1375. doi: 10.7623/syxb202011006
    [3]
    薛海涛, 李璐璐, 卢双舫. 天然气扩散损失量估算方法探讨[J]. 石油与天然气地质, 2010, 31(3): 343-346. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201003015.htm

    XUE Haitao, LI Lulu, LU Shuangfang. A discussion on methods for estimating diffusion loss of natural gas[J]. Oil & Gas Geology, 2010, 31(3): 343-346. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201003015.htm
    [4]
    MI Lidong, JIANG Hanqiao, LI Junjian. The impact of diffusion type on multiscale discrete fracture model numerical simulation for shale gas[J]. Journal of Natural Gas Science and Engineer-ing, 2014, 20: 74-81. doi: 10.1016/j.jngse.2014.06.013
    [5]
    赵可英. 页岩吸附气壁面扩散机理及现场应用[J]. 科学技术与工程, 2021, 21(4): 1362-1366. doi: 10.3969/j.issn.1671-1815.2021.04.016

    ZHAO Keying. Diffusion mechanisms and field application of absorbed gas on surface wall of nano-pores of shale[J]. Science Technology and Engineering, 2021, 21(4): 1362-1366. doi: 10.3969/j.issn.1671-1815.2021.04.016
    [6]
    WU Keliu, LI Xiangfang, GUO Chaohua, et al. A unified model for gas transfer in nanopores of shale-gas reservoirs: coupling pore diffusion and surface diffusion[J]. SPE Journal, 2016, 21(5): 1583-1611. doi: 10.2118/2014-1921039-PA
    [7]
    ZHONG Ying, SHE Jiping, ZHANG Hao, et al. Experimental and numerical analyses of apparent gas diffusion coefficient in gas shales[J]. Fuel, 2019, 258: 116123. doi: 10.1016/j.fuel.2019.116123
    [8]
    CHEN Mingjun, KANG Yili, ZHANG Tingshan, et al. Methane diffusion in shales with multiple pore sizes at supercritical conditions[J]. Chemical Engineering Journal, 2018, 334: 1455-1465. doi: 10.1016/j.cej.2017.11.082
    [9]
    ETMINAN S R, JAVADPOUR F, MAINI B B, et al. Measurement of gas storage processes in shale and of the molecular diffusion coefficient in kerogen[J]. International Journal of Coal Geology, 2014, 123: 10-19. doi: 10.1016/j.coal.2013.10.007
    [10]
    WEI Mingyao, LIU Yingke, LIU Jishan, et al. Micro-scale investigation on coupling of gas diffusion and mechanical deformation of shale[J]. Journal of Petroleum Science and Engineering, 2019, 175: 961-970. doi: 10.1016/j.petrol.2019.01.039
    [11]
    吴克柳, 李相方, 陈掌星. 页岩纳米孔吸附气表面扩散机理和数学模型[J]. 中国科学: 技术科学, 2015, 45(5): 525-540. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505012.htm

    WU Keliu, LI Xiangfang, CHEN Zhangxing. The mechanism and mathematical model for the adsorbed gas surface diffusion in nanopores of shale gas reservoirs[J]. Scientia Sinica Technologica, 2015, 45(5): 525-540. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505012.htm
    [12]
    柳广弟, 赵忠英, 孙明亮, 等. 天然气在岩石中扩散系数的新认识[J]. 石油勘探与开发, 2012, 39(5): 559-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205007.htm

    LIU Guangdi, ZHAO Zhongying, SUN Mingliang, et al. New insights into natural gas diffusion coefficient in rocks[J]. Petroleum Exploration and Development, 2012, 39(5): 559-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205007.htm
    [13]
    张焱林, 段轲, 刘早学, 等. 鄂西下寒武统牛蹄塘组页岩特征及页岩气富集主控因素[J]. 石油实验地质, 2019, 41(5): 691-698. doi: 10.11781/sysydz201905691

    ZHANG Yanlin, DUAN Ke, LIU Zaoxue, et al. Characteristics of shale and main controlling factors of shale gas enrichment of Lower Cambrian Niutitang Formation in western Hubei[J]. Petroleum Geology & Experiment, 2019, 41(5): 691-698. doi: 10.11781/sysydz201905691
    [14]
    冯光俊. 上扬子区下寒武统页岩高温高压甲烷吸附与页岩气赋存[D]. 徐州: 中国矿业大学, 2020.

    FENG Guangjun. High-temperature high-pressure methane adsorption and shale gas occurrence in Lower Cambrian shale, Upper Yangtze area[D]. Xuzhou: China University of Mining and Technology, 2020.
    [15]
    全国石油天然气标准化技术委员会. 岩心分析方法: GB/T 29172-2012[S]. 北京: 中国标准出版社, 2012.

    Petroleum of Standardization Administration of China. Practices for core analysis: GB/T 29172-2012[S]. Beijing: China Standards Press, 2012.
    [16]
    卢丽, 王国建, 朱怀平, 等. 深层天然气扩散系数模拟实验装置的研制[J]. 物探与化探, 2020, 44(6): 1441-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202006023.htm

    LU Li, WANG Guojian, ZHU Huaiping, et al. The development of an experimental measuring apparatus for simulating the diffusion coefficient of naturalgas in depth[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1441-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202006023.htm
    [17]
    SCHLOEMER S, KROOSS B M. Molecular transport of methane, ethane and nitrogen and the influence of diffusion on the chemical and isotopic composition of natural gas accumulations[J]. Geofluids, 2004, 4(1): 81-108. doi: 10.1111/j.1468-8123.2004.00076.x
    [18]
    WANG Sen, FENG Qihong, ZHA Ming, et al. Supercritical methane diffusion in shale nanopores: effects of pressure, mineral types, and moisture content[J]. Energy & Fuels, 2018, 32(1): 169-180.
    [19]
    陈璐, 胡志明, 熊伟, 等. 页岩气扩散实验与数学模型[J]. 天然气地球科学, 2020, 31(9): 1285-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202009009.htm

    CHEN Lu, HU Zhiming, XIONG Wei, et al. Diffusion experiment of shale gas and mathematical model[J]. Natural Gas Geoscience, 2020, 31(9): 1285-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202009009.htm
    [20]
    曲斌, 武晓鹏, 巩继海, 等. 基于扩散性实验技术的泥质岩封盖能力: 以松辽盆地北部徐家围子断陷泥质岩为例[C]//油气田勘探与开发国际会议(IFEDC 2018)论文集. 西安: 西安华线网络信息服务有限公司, 2018: 1217-1223.

    QU Bin, WU Xiaopeng, GONG Jihai, et al. Mudstone capping capability based on diffusion experimental technique: taking the mudstone in the northern Songliao Basin as an example[C]//IFEDC-20182378. 2018: 1217-1223.
    [21]
    KIM C, JANG H, LEE Y, et al. Diffusion characteristics of nanoscale gas flow in shale matrix from Haenam Basin, Korea[J]. Environmental Earth Sciences, 2016, 75(4): 350. doi: 10.1007/s12665-016-5267-4
    [22]
    ZHANG Yanyu, LI Dongdong, SUN Xiaofei, et al. New theoretical model to calculate the apparent permeability of shale gas in the real state[J]. Journal of Natural Gas Science and Engineering, 2019, 72: 103012. doi: 10.1016/j.jngse.2019.103012
    [23]
    ROSS D J K, BUSTIN R M. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J]. Fuel, 2007, 86(17/18): 2696-2706.
    [24]
    KIM C, JANG H, LEE J. Experimental investigation on the characteristics of gas diffusion in shale gas reservoir using porosity and permeability of nanopore scale[J]. Journal of Petroleum Science and Engineering, 2015, 133: 226-237.
    [25]
    CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Deve-lopment of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
    [26]
    CUI X, BUSTIN A M M, BUSTIN R M. Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications[J]. Geofluids, 2009, 9(3): 208-223.
    [27]
    WU Keliu, CHEN Zhangxin, LI Xiangfang, et al. A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect: adsorption-mechanic coupling[J]. International Journal of Heat and Mass Transfer, 2016, 93: 408-426.
    [28]
    周庆华, 宋宁, 王成章, 等. 湖南常德地区牛蹄塘组页岩特征及含气性[J]. 天然气地球科学, 2015, 26(2): 301-311. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201502015.htm

    ZHOU Qinghua, SONG Ning, WANG Chengzhang, et al. Characteristics of shale and gas content of Niutitang Formation in Changde region of Hunan Province[J]. Natural Gas Geoscience, 2015, 26(2): 301-311. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201502015.htm
    [29]
    付德亮, 田涛, 秦建强, 等. 大竹坝-回军坝向斜牛蹄塘组页岩吸附性研究[J]. 煤炭学报, 2018, 43(12): 3453-3460. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201812024.htm

    FU Deliang, TIAN Tao, QIN Jianqiang, et al. Characterization of methane adsorption on the shales in Niutitang Formation at Dazhuba-Huijunba Oblique[J]. Journal of China Coal Society, 2018, 43(12): 3453-3460. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201812024.htm
    [30]
    谢舟, 卢双舫, 于玲, 等. 泥质气源岩层内天然气扩散损失量评价: 以黔南坳陷黄页1井九门冲组页岩为例[J]. 矿物学报, 2014, 34(1): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201401021.htm

    XIE Zhou, LU Shuangfang, YU Ling, et al. Assessment of natural gas loss from mudstone gas source rocks: an example from Jiumenchong Formation of Huangye 1 well, Lower Cambrian, southern Guizhou Sag[J]. Acta Mineralogica Sinica, 2014, 34(1): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201401021.htm
    [31]
    谢卫东. 川南长宁地区龙马溪组储层特征与页岩气保存条件[D]. 徐州: 中国矿业大学, 2020.

    XIE Weidong. Reservoir characteristics and shale gas preservation of the Longmaxi Formation in the Changning area, south Sichuan[D]. Xuzhou: China University of Mining and Technology, 2020.
    [32]
    王濡岳, 丁文龙, 龚大建, 等. 黔北地区海相页岩气保存条件: 以贵州岑巩区块下寒武统牛蹄塘组为例[J]. 石油与天然气地质, 2016, 37(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601008.htm

    WANG Ruyue, DING Wenlong, GONG Dajian, et al. Gas preservation conditions of marine shale in northern Guizhou area: a case study of the Lower Cambrian Niutitang Formation in the Cen' gong block, Guizhou Province[J]. Oil & Gas Geology, 2016, 37(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601008.htm
    [33]
    钟宁宁, 赵喆, 李艳霞, 等. 论南方海相层系有效供烃能力的主要控制因素[J]. 地质学报, 2010, 84(2): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201002001.htm

    ZHONG Ningning, ZHAO Zhe, LI Yanxia, et al. An approach to the main controls on the potential of efficient hydrocarbon supply of marine sequences in South China[J]. Acta Geologica Sinica, 2010, 84(2): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201002001.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (443) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return