Volume 47 Issue 5
Sep.  2025
Turn off MathJax
Article Contents
JIGEERBIEKE Yeernaer, HU Wenxuan, KANG Xun, LIU Wendong, ZHANG Wenjie. Reservoir differences and genesis between Upper Permian Upper Wuerhe Formation and Lower Triassic Baikouquan Formation in Mahu Sag, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(5): 1063-1074. doi: 10.11781/sysydz2025051063
Citation: JIGEERBIEKE Yeernaer, HU Wenxuan, KANG Xun, LIU Wendong, ZHANG Wenjie. Reservoir differences and genesis between Upper Permian Upper Wuerhe Formation and Lower Triassic Baikouquan Formation in Mahu Sag, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(5): 1063-1074. doi: 10.11781/sysydz2025051063

Reservoir differences and genesis between Upper Permian Upper Wuerhe Formation and Lower Triassic Baikouquan Formation in Mahu Sag, Junggar Basin

doi: 10.11781/sysydz2025051063
  • Received Date: 2025-02-19
  • Rev Recd Date: 2025-07-16
  • Publish Date: 2025-09-28
  • A conglomerate is an important type of oil and gas reservoir. Analyzing its heterogeneity and genesis is conducive to identifying main controlling factors and hydrocarbon accumulation mechanisms of conglomerate reservoirs, thereby providing guidance for oil and gas reservoir prediction and exploration deployment. This study focuses on two sets of conglomerate reservoirs from the Upper Permian Upper Wuerhe Formation and the Lower Triassic Baikouquan Formation in the Mahu Sag of the Junggar Basin, which are in unconformity contact. Based on core observations, petrographic identification, scanning electron microscopy (SEM), major element analysis, and detrital zircon U-Pb dating, the lithology and reservoir capacity of the two sets of reservoirs were systematically compared. The significant differences in parent rock composition, cement types, and reservoir space and properties of these two reservoirs were identified. The gravels of the Upper Permian Upper Wuerhe Formation in the Mahu Sag of the Junggar Basin were mainly composed of medium-basic igneous rock debris and tuff debris, the cements were mainly zeolite and calcite, and the dominant reservoir space was laumontite dissolution pores. In contrast, the gravels of the Lower Triassic Baikouquan Formation were mainly felsic in composition, the calcite exhibited heterogeneous cementation, and the dominant reservoir space was feldspar dissolution pores. Differences in sediment provenance were the fundamental cause of variations in framework grains and cements between the two sets of reservoirs, and the subsequent acidic fluid activities and differential water and rock interactions further influenced reservoir space types and assemblages. High-quality reservoirs in both formations predominantly developed in subaqueous distributary channel depositional microfacies within the fan-delta front facies belt. Depositional microfacies controlled the original pore structure, while parent rock composition, sedimentary evolution, diagenesis, and fault activities jointly shaped the development characteristics and physical property distribution of the reservoirs.

     

  • All authors declare no relevant conflict of interests.
    The study was designed by JIGEERBIEKE Yeernaer, HU Wenxuan, LIU Wendong, and ZHANG Wenjie. The experimental operation was completed by JIGEERBIEKE Yeernaer. The manuscript was drafted and revised by JIGEERBIEKE Yeernaer, HU Wenxuan, and KANG Xun. All authors have read the final version of the paper and consented to its submission.
  • loading
  • [1]
    昝灵, 王顺华, 张枝焕, 等. 砂砾岩储层研究现状[J]. 长江大学学报(自然科学版), 2011, 8(3): 63-66.

    ZAN Ling, WANG Shunhua, ZHANG Zhihuan, et al. Research status of sandy conglomerates reservoir[J]. Journal of Yangtze University (Natural Science Edition), 2011, 8(3): 63-66.
    [2]
    STOW D A V, BISHOP C D, MILLS S J. Sedimentology of the Brae Oilfield, North Sea: fan models and controls[J]. Journal of Petroleum Geology, 1982, 5(2): 129-148. doi: 10.1111/j.1747-5457.1982.tb00501.x
    [3]
    ROGERS J P. New reservoir model from an old oil field: Garfield conglomerate pool, Pawnee County, Kansas[J]. AAPG Bulletin, 2007, 91(10): 1349-1365. doi: 10.1306/06140706082
    [4]
    朱筱敏, 吴冬, 张昕, 等. 东营凹陷沙河街组近岸水下扇低渗储层成因[J]. 石油与天然气地质, 2014, 35(5): 646-653.

    ZHU Xiaomin, WU Dong, ZHANG Xin, et al. Genesis of low permeability reservoirs of nearshore subaqueous fan in Shahejie Formation in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2014, 35(5): 646-653.
    [5]
    JIA Haibo, JI Hancheng, WANG Linsheng, et al. Reservoir quality variations within a conglomeratic fan-delta system in the Mahu Sag, northwestern Junggar Basin: characteristics and controlling factors[J]. Journal of Petroleum Science and Engineering, 2017, 152: 165-181. doi: 10.1016/j.petrol.2017.03.002
    [6]
    GAO Mingxuan, YU Xinghe, LI Shunli, et al. Control of slope-pattern on the deposition of fan-delta systems: a case study of the Upper Karamay Formation, Junggar Basin[J]. Frontiers of Earth Science, 2024, 18(2): 384-399. doi: 10.1007/s11707-022-1077-z
    [7]
    BJØRLYKKE K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins[J]. Sedimentary Geology, 2014, 301: 1-14. doi: 10.1016/j.sedgeo.2013.12.002
    [8]
    CANT D J, ETHIER V G. Lithology-dependent diagenetic control of reservoir properties of conglomerates, Falher Member, Elmworth Field, Alberta[J]. AAPG Bulletin, 1984, 68(8): 1044-1054.
    [9]
    MAHMIC O, DYPVIK H, HAMMER E. Diagenetic influence on reservoir quality evolution, examples from Triassic conglomerates/arenites in the Edvard Grieg field, Norwegian North Sea[J]. Marine and Petroleum Geology, 2018, 93: 247-271. doi: 10.1016/j.marpetgeo.2018.03.006
    [10]
    唐勇, 郭文建, 王霞田, 等. 玛湖凹陷砾岩大油区勘探新突破及启示[J]. 新疆石油地质, 2019, 40(2): 127-137.

    TANG Yong, GUO Wenjian, WANG Xiatian, et al. A new breakthrough in exploration of large conglomerate oil province in Mahu Sag and its implications[J]. Xinjiang Petroleum Geology, 2019, 40(2): 127-137.
    [11]
    马永平, 张献文, 朱卡, 等. 玛湖凹陷二叠系上乌尔禾组扇三角洲沉积特征及控制因素[J]. 岩性油气藏, 2021, 33(1): 57-70.

    MA Yongping, ZHANG Xianwen, ZHU Ka, et al. Sedimentary characteristics and controlling factors of fan-delta of the Upper Urho Formation of Permian in Mahu Sag[J]. Lithologic Reservoirs, 2021, 33(1): 57-70.
    [12]
    王剑, 张欣吉, 高崇龙, 等. 准噶尔盆地玛南地区乌尔禾组砂砾岩类型及沉积模式[J]. 新疆地质, 2021, 39(1): 104-111.

    WANG Jian, ZHANG Xinji, GAO Chonglong, et al. Glutenite types and sedimentary models of Wuerhe Formation in Manan area, Junggar Basin[J]. Xinjiang Geology, 2021, 39(1): 104-111.
    [13]
    邹妞妞, 史基安, 张大权, 等. 准噶尔盆地西北缘玛北地区百口泉组扇三角洲沉积模式[J]. 沉积学报, 2015, 33(3): 607-615.

    ZOU Niuniu, SHI Ji'an, ZHANG Daquan, et al. Fan delta depositional model of Triassic Baikouquan Formation in Mabei area, NW Junggar Basin[J]. Acta Sedimentologica Sinica, 2015, 33(3): 607-615.
    [14]
    瞿建华, 张磊, 吴俊, 等. 玛湖凹陷西斜坡百口泉组砂砾岩储集层特征及物性控制因素[J]. 新疆石油地质, 2017, 38(1): 1-6.

    QU Jianhua, ZHANG Lei, WU Jun, et al. Characteristics of sandy conglomerate reservoirs and controlling factors on physical properties of Baikouquan Formation in the western slope of Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2017, 38(1): 1-6.
    [15]
    王剑, 周路, 靳军, 等. 准噶尔盆地玛南地区乌尔禾组砂砾岩优质储层特征[J]. 岩性油气藏, 2021, 33(5): 34-44.

    WANG Jian, ZHOU Lu, JIN Jun, et al. Characteristics of high-quality glutenite reservoirs of Urho Formation in Manan area, Junggar Basin[J]. Lithologic Reservoirs, 2021, 33(5): 34-44.
    [16]
    连丽霞, 王剑, 马聪, 等. 准噶尔盆地西北缘沸石发育特征及成储机理初探: 以玛南地区二叠系乌尔禾组为例[J]. 高校地质学报, 2021, 27(1): 102-110.

    LIAN Lixia, WANG Jian, MA Cong, et al. Characteristics and formation mechanism of zeolite in the northwestern margin of Junggar Basin: a case study of the Permian Urho Formation in Manan area[J]. Geological Journal of China Universities, 2021, 27(1): 102-110.
    [17]
    靳军, 康逊, 胡文瑄, 等. 准噶尔盆地玛湖凹陷西斜坡百口泉组砂砾岩储层成岩作用及对储集性能的影响[J]. 石油与天然气地质, 2017, 38(2): 323-333.

    JIN Jun, KANG Xun, HU Wenxuan, et al. Diagenesis and its influence on coarse classic reservoirs in the Baikouquan Formation of western slope of the Mahu Depression, Junggar Basin[J]. Oil & Gas Geology, 2017, 38(2): 323-333.
    [18]
    张顺存, 蒋欢, 张磊, 等. 准噶尔盆地玛北地区三叠系百口泉组优质储层成因分析[J]. 沉积学报, 2014, 36(6): 1171-1180.

    ZHANG Shuncun, JIANG Huan, ZHANG Lei, et al. Genetic analysis of the high quality reservoir of Triassic Baikouquan Formation in Mabei region, Junggar Basin[J]. Acta Sedimentologica Sinica, 2014, 36(6): 1171-1180.
    [19]
    黄立良, 王然, 邹阳, 等. 准噶尔盆地玛南斜坡区上二叠统上乌尔禾组连续型砂砾岩油藏群成藏特征[J]. 石油实验地质, 2022, 44(1): 51-59. doi: 10.11781/sysydz202201051

    HUANG Liliang, WANG Ran, ZOU Yang, et al. Accumulation characteristics of continuous sand conglomerate reservoirs of Upper Permian Upper Wuerhe Formation in Manan slope area, Junggar Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 51-59. doi: 10.11781/sysydz202201051
    [20]
    尹路, 许多年, 乐幸福, 等. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J]. 岩性油气藏, 2024, 36(1): 59-68.

    YIN Lu, XU Duonian, YUE Xingfu, et al. Reservoir characteristics and hydrocarbon accumulation rules of Triassic Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Lithologic Reservoirs, 2024, 36(1): 59-68.
    [21]
    马宗晋, 曲国胜, 李涛, 等. 准噶尔盆地盆山构造耦合与分段性[J]. 新疆石油地质, 2008, 29(3): 271-277.

    MA Zongjin, QU Guosheng, LI Tao, et al. Tectonic coupling and segmentation of marginal structural belt in Junggar Basin[J]. Xinjiang Petroleum Geology, 2008, 29(3): 271-277.
    [22]
    张元元, 曾宇轲, 唐文斌. 准噶尔盆地西北缘二叠纪原型盆地分析[J]. 石油科学通报, 2021, 6(3): 333-343.

    ZHANG Yuanyuan, ZENG Yuke, TANG Wenbin. Permian attributes and tectonic evolution of the west Junggar Basin[J]. Petroleum Science Bulletin, 2021, 6(3): 333-343.
    [23]
    陈新, 卢华复, 舒良树, 等. 准噶尔盆地构造演化分析新进展[J]. 高校地质学报, 2002, 8(3): 257-267.

    CHEN Xin, LU Huafu, SHU Liangshu, et al. Study on tectonic evolution of Junggar Basin[J]. Geological Journal of China Universities, 2002, 8(3): 257-267.
    [24]
    WANG Yanjun, JIA Dong, PAN Jianguo, et al. Multiple-phase tectonic superposition and reworking in the Junggar Basin of northwestern China—Implications for deep-seated petroleum exploration[J]. AAPG Bulletin, 2018, 102(8): 1489-1521. doi: 10.1306/10181716518
    [25]
    何登发, 吴松涛, 赵龙, 等. 环玛湖凹陷二叠—三叠系沉积构造背景及其演化[J]. 新疆石油地质, 2018, 39(1): 35-47.

    HE Dengfa, WU Songtao, ZHAO Long, et al. Tectono-depositional setting and its evolution during Permian to Triassic around Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2018, 39(1): 35-47.
    [26]
    尹继元, 陈文, 袁超, 等. 新疆西准噶尔晚古生代侵入岩的年龄和构造意义: 来自锆石LA-ICP-MS定年的证据[J]. 地球化学, 2013, 42(5): 414-429.

    YIN Jiyuan, CHEN Wen, YUAN Chao, et al. Ages and tectonic implication of Late Paleozoic plutons in the west Junggar, north Xinjiang: evidence from LA-ICPMS zircon geochronology[J]. Geochimica, 2013, 42(5): 414-429.
    [27]
    YUAN Xiaoguang, YANG Yida, LI Weifeng, et al. Provenance of Triassic Xiazijie fan-delta in Junggar Basin, northwestern China: insights from U-Pb dating of detrital zircons[J]. Minerals, 2023, 13(4): 467. doi: 10.3390/min13040467
    [28]
    CHEN Xingyu, ZHANG Zhijie, YUAN Xuanjun, et al. The evolution of permian source-to-sink systems and tectonics implications in the NW Junggar Basin, China: evidence from detrital zircon geochronology[J]. Minerals, 2022, 12(9): 1169. doi: 10.3390/min12091169
    [29]
    CHEN Jiafu, HAN Baofu, JI Jianqing, et al. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern west Junggar, north Xinjiang, China[J]. Lithos, 2010, 115(1/4): 137-152.
    [30]
    ZHANG Pan, WANG Guocan, SHEN Tianyi, et al. Late Paleozoic back-arc basin in west Junggar (northwestern China): new geochronological and petrogenetic constraints from basalts and cherts in the western Karamay area[J]. Journal of Geodynamics, 2019, 126: 1-11. doi: 10.1016/j.jog.2019.03.002
    [31]
    廖婉琳, 肖龙, 张雷, 等. 新疆西准噶尔早石炭世沉积地层的物源及构造环境[J]. 地球科学, 2015, 40(3): 485-503.

    LIAO Wanlin, XIAO Long, ZHANG Lei, et al. Provenance and tectonic settings of Early Carboniferous sedimentary strata in western Junggar, Xinjiang[J]. Earth Science, 2015, 40(3): 485-503.
    [32]
    韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ): 后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006, 22(5): 1077-1086.

    HAN Baofu, JI Jianqing, SONG Biao, et al. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part Ⅰ): timing of post-collisional plutonism[J]. Acta Petrologica Sinica, 2006, 22(5): 1077-1086.
    [33]
    王乐民, 晁文迪, 李永军, 等. 西准噶尔乌尔禾早二叠世中基性岩墙群LA-ICP-MS锆石U-Pb测年及构造意义[J]. 新疆地质, 2015, 33(3): 297-304.

    WANG Lemin, CHAO Wendi, LI Yongjun, et al. Zircon LA-ICP-MS U-Pb dating and tectonic settings implication of the Early Permian intermediate to mafic dyke swarms in Urho area, west Junggar[J]. Xinjiang Geology, 2015, 33(3): 297-304.
    [34]
    LIANG Yuanyuan, ZHANG Yuanyuan, CHEN Shi, et al. Controls of a strike-slip fault system on the tectonic inversion of the Mahu Depression at the northwestern margin of the Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 2020, 198: 104229. doi: 10.1016/j.jseaes.2020.104229
    [35]
    TANG Wenbin, ZHANG Yuanyuan, PE-PIPER G, et al. Permian to Early Triassic tectono-sedimentary evolution of the Mahu Sag, Junggar Basin, western China: sedimentological implications of the transition from rifting to tectonic inversion[J]. Marine and Petroleum Geology, 2021, 123: 104730. doi: 10.1016/j.marpetgeo.2020.104730
    [36]
    HOSKIN P W O, SCHALTEGGER U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62. doi: 10.2113/0530027
    [37]
    朱世发, 朱筱敏, 王一博, 等. 准噶尔盆地西北缘克百地区三叠系储层溶蚀作用特征及孔隙演化[J]. 沉积学报, 2010, 28(3): 547-555.

    ZHU Shifa, ZHU Xiaomin, WANG Yibo, et al. Dissolution characteristics and pore evolution of Triassic Reservoir in Ke-Bai area, northwestern margin of Junggar Basin[J]. Acta Sedimentologica Sinica, 2010, 28(3): 547-555.
    [38]
    DING Xiaoqi, HAN Meimei, ZHANG Shaonan. The role of provenance in the diagenesis of siliciclastic reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Petroleum Science, 2013, 10(2): 149-160. doi: 10.1007/s12182-013-0262-9
    [39]
    曹剑, 雷德文, 李玉文, 等. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组[J]. 石油学报, 2015, 36(7): 781-790.

    CAO Jian, LEI Dewen, LI Yuwen, et al. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin[J]. Acta Petrolei Sinica, 2015, 36(7): 781-790.
    [40]
    LI Ji, ZHANG Wenjie, XIANG Baoli, et al. Characteristics of dissolved pores and dissolution mechanism of zeolite-rich reservoirs in the Wuerhe Formation in Mahu area, Junggar Basin[J]. Energy Exploration & Exploitation, 2021, 40(1): 421-441.
    [41]
    CHEN Yongbo, CHENG Xiaogan, ZHANG Han, et al. Fault characteristics and control on hydrocarbon accumulation of middle-shallow layers in the slope zone of Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 1050-1060. doi: 10.1016/S1876-3804(18)30108-3
    [42]
    丁文龙, 金之钧, 张义杰, 等. 新疆准噶尔盆地断裂控油气作用机理研究[J]. 地学前缘, 2002, 9(3): 102.

    DING Wenlong, JIN Zhijun, ZHANG Yijie, et al. The study on the mechanisms of fault controlling hydrocarbons in Junggar Basin[J]. Earth Science Frontiers, 2002, 9(3): 102.
    [43]
    张关龙, 王越. 准噶尔盆地早二叠世构造—沉积格局及石油地质意义[J]. 油气地质与采收率, 2023, 30(1): 35-48.

    ZHANG Guanlong, WANG Yue. Tectono-sedimentary framework of Early Permian in Junggar Basin and its petroleum geological significance[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 35-48.
    [44]
    胡张明, 胡明毅, 喻意, 等. 断缝体识别及储层发育模式: 以准噶尔盆地玛湖凹陷玛东地区百口泉组为例[J]. 断块油气田, 2024, 31(2): 283-288.

    HU Zhangming, HU Mingyi, YU Yi, et al. Fault-fracture body identification and reservoir development model: taking Baikouquan Formation in Madong area of Mahu Sag, Junggar Basin as an example[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 283-288.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (37) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return