Citation: | JIANG Chengzhou, WANG Guiwen, WANG Song, ZHANG Yilin, HUANG Yuyue. Geochemical characteristics and implications of pyrite sulfur isotope in Fengcheng Formation of Mahu Sag, Junggar Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(5): 1106-1117. doi: 10.11781/sysydz2025051106 |
[1] |
邱振, 邹才能. 非常规油气沉积学: 内涵与展望[J]. 沉积学报, 2020, 38(1): 1-29.
QIU Zhen, ZOU Caineng. Unconventional petroleum sedimento-logy: connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
|
[2] |
杨智, 邹才能, 付金华, 等. 大面积连续分布是页岩层系油气的标志特征: 以鄂尔多斯盆地为例[J]. 地球科学与环境学报, 2019, 41(4): 459-474.
YANG Zhi, ZOU Caineng, FU Jinhua, et al. Characteristics and "Sweet area (section)" evaluation of continuous tight & shale oil and gas in Ordos Basin, North-Central China[J]. Journal of Earth Sciences and Environment, 2019, 41(4): 459-474.
|
[3] |
郭秋麟, 米石云, 张倩, 等. 中国页岩油资源评价方法与资源潜力探讨[J]. 石油实验地质, 2023, 45(3): 402-412.
GUO Qiulin, MI Shiyun, ZHANG Qian, et al. Assessment methods and potential of shale oil resources in China[J]. Petroleum Geology & Experiment, 2023, 45(3): 402-412.
|
[4] |
袁士义, 雷征东, 李军诗, 等. 陆相页岩油开发技术进展及规模效益开发对策思考[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 13-24.
YUAN Shiyi, LEI Zhengdong, LI Junshi, et al. Progress in technology for the development of continental shale oil and thoughts on the development of scale benefits and strategies[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 13-24.
|
[5] |
邹才能, 朱如凯, 董大忠, 等. 页岩油气科技进步、发展战略及政策建议[J]. 石油学报, 2022, 43(12): 1675-1686.
ZOU Caineng, ZHU Rukai, DONG Dazhong, et al. Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas[J]. Acta Petrolei Sinica, 2022, 43(12): 1675-1686.
|
[6] |
赵文智, 卞从胜, 蒲秀刚. 中国典型咸化湖盆页岩油富集与流动特征及在"甜点"评价中的意义[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 25-37.
ZHAO Wenzhi, BIAN Congsheng, PU Xiugang. Enrichment and flow characteristics of shale oil in typical salinized lake basins in China and its significance for "sweet spot" evaluation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 25-37.
|
[7] |
张奎华, 孙中良, 张关龙, 等. 准噶尔盆地哈山地区下二叠统风城组泥页岩优势岩相与页岩油富集模式[J]. 石油实验地质, 2023, 45(4): 593-605.
ZHANG Kuihua, SUN Zhongliang, ZHANG Guanlong, et al. Shale dominant lithofacies and shale oil enrichment model of Lower Permian Fengcheng Formation in Hashan area, Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 593-605.
|
[8] |
支东明, 唐勇, 何文军, 等. 准噶尔盆地玛湖凹陷风城组常规—非常规油气有序共生与全油气系统成藏模式[J]. 石油勘探与开发, 2021, 48(1): 38-51.
ZHI Dongming, TANG Yong, HE Wenjun, et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Exploration and Deve-lopment, 2021, 48(1): 38-51.
|
[9] |
曹剑, 雷德文, 李玉文, 等. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组[J]. 石油学报, 2015, 36(7): 781-790.
CAO Jian, LEI Dewen, LI Yuwen, et al. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin[J]. Acta Petrolei Sinica, 2015, 36(7): 781-790.
|
[10] |
余宽宏, 操应长, 邱隆伟, 等. 准噶尔盆地玛湖凹陷下二叠统风城组含碱层段韵律特征及成因[J]. 古地理学报, 2016, 18(6): 1012-1029.
YU Kuanhong, CAO Yingchang, QIU Longwei, et al. Characte-ristics of alkaline layer cycles and origin of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Journal of Palaeogeography, 2016, 18(6): 1012-1029.
|
[11] |
李嘉蕊, 杨智, 王兆云, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油赋存定量表征及其主控因素[J]. 石油实验地质, 2023, 45(4): 681-692. doi: 10.11781/sysydz202304681
LI Jiarui, YANG Zhi, WANG Zhaoyun, et al. Quantitative characte-rization and main controlling factors of shale oil occurrence in Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 681-692. doi: 10.11781/sysydz202304681
|
[12] |
支东明, 冷筠滢, 谢安, 等. 准噶尔盆地玛湖凹陷风城组泥页岩生物标志化合物特征与赋存状态研究[J]. 石油实验地质, 2024, 46(5): 954-964.
ZHI Dongming, LENG Junying, XIE An, et al. Characteristics and occurrence states of shale biomarker compounds in Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2024, 46(5): 954-964.
|
[13] |
WILKIN R T, BARNES H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4167-4179. doi: 10.1016/S0016-7037(97)81466-4
|
[14] |
肖迪, 戴朝成, 白斌, 等. 陆相富有机质页岩黄铁矿特征及意义: 以鄂尔多斯盆地延长组和松辽盆地青山口组为例[J]. 科学技术与工程, 2023, 23(23): 9888-9902.
XIAO Di, DAI Chaocheng, BAI Bin, et al. Characteristics and significance of continental organic rich shale pyrite: taking Yanchang Formation in Ordos Basin and Qingshankou Formation in Songliao Basin as examples[J]. Science Technology and Engineering, 2023, 23(23): 9888-9902.
|
[15] |
WANG Pingkang, HUANG Yongjian, WANG Chengshan, et al. Pyrite morphology in the first member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 125-136. doi: 10.1016/j.palaeo.2012.09.027
|
[16] |
黄伟凯, 周新平, 刘江艳, 等. 鄂尔多斯盆地华池地区延长组7段页岩油储层孔隙结构特征及控制因素[J]. 天然气地球科学, 2022, 33(12): 1951-1968.
HUANG Weikai, ZHOU Xinping, LIU Jiangyan, et al. Characte-ristics and controlling factors of pore structure of shale in the seventh member of Yanchang Formation in Huachi area, Ordos Basin[J]. Natural Gas Geoscience, 2022, 33(12): 1951-1968.
|
[17] |
刘江艳, 李士祥, 李桢, 等. 鄂尔多斯盆地长73亚段泥页岩黄铁矿发育特征及其地质意义[J]. 天然气地球科学, 2021, 32(12): 1830-1838.
LIU Jiangyan, LI Shixiang, LI Zhen, et al. Characteristics and geological significance of pyrite in Chang 73 sub-member in the Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1830-1838.
|
[18] |
王濡岳, 胡宗全, 包汉勇, 等. 四川盆地上奥陶统五峰组—下志留统龙马溪组页岩关键矿物成岩演化及其控储作用[J]. 石油实验地质, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996
WANG Ruyue, HU Zongquan, BAO Hanyong, et al. Diagenetic evolution of key minerals and its controls on reservoir quality of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale of Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996
|
[19] |
龚德瑜, 刘泽阳, 何文军, 等. 准噶尔盆地玛湖凹陷风城组有机质多元富集机制[J]. 石油勘探与开发, 2024, 51(2): 260-272.
GONG Deyu, LIU Zeyang, HE Wenjun, et al. Multiple enrichment mechanisms of organic matter in the Fengcheng Formation of Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2024, 51(2): 260-272.
|
[20] |
卜建军, 何卫红, 张克信, 等. 古亚洲洋的演化: 来自古生物地层学方面的证据[J]. 地球科学, 2020, 45(3): 711-727.
BU Jianjun, HE Weihong, ZHANG Kexin, et al. Evolution of the Paleo-Asian Ocean: evidences from paleontology and stratigraphy[J]. Earth Science, 2020, 45(3): 711-727.
|
[21] |
尤兴弟. 准噶尔盆地西北缘风城组沉积相探讨[J]. 新疆石油地质, 1986, 7(1): 47-52.
YOU Xingdi. Discussion on sedimentary facies in the Fengcheng Formation of northwestern Junggar Basin[J]. Xinjiang Petroleum Geology, 1986, 7(1): 47-52.
|
[22] |
张瑞杰, 曹剑, 边立曾, 等. 古亚洲洋关闭期准噶尔湖发现"海退遗种"红藻及其成烃有效性[J]. 中国科学: 地球科学, 2024, 54(9): 2898-2916.
ZHANG Ruijie, CAO Jian, BIAN Lizeng, et al. Red algal evidence for a marine regression during closure of the Paleo-Asian Ocean in the Junggar Basin and its linkage to hydrocarbon generation[J]. Science China: Earth Sciences, 2024, 67(9): 2845-2863.
|
[23] |
韩娟, 刘汉彬, 金贵善, 等. 沉积岩中黄铁矿含量及其硫同位素组成连续测定方法研究[J]. 世界核地质科学, 2024, 41(1): 73-81.
HAN Juan, LIU Hanbin, JIN Guishan, et al. Study on the conti-nuous determination of pyrite content and its sulfur isotope composition in sedimentary rock[J]. World Nuclear Geoscience, 2024, 41(1): 73-81.
|
[24] |
TANG Gongjian, WANG Qiang, WYMAN D A, et al. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China)[J]. Chemical Geology, 2010, 277(3/4): 281-300.
|
[25] |
史建杰, 陈宣华, 丁伟翠, 等. 中亚造山带西准噶尔晚古生代洋陆转换与构造演化: 来自晚石炭世流纹岩的证据[J]. 地质力学学报, 2017, 23(1): 150-160.
SHI Jianjie, CHEN Xuanhua, DING Weicui, et al. Late Paleozoic ocean-continent transition in West Junggar, Central Asian Orogenic Belt: evidence from Late Carboniferous rhyolites[J]. Journal of Geomechanics, 2017, 23(1): 150-160.
|
[26] |
CAO Jian, XIA Liuwen, WANG Tingting, et al. An alkaline lake in the Late Paleozoic Ice Age (LPIA): a review and new insights into paleoenvironment and petroleum geology[J]. Earth-Science Reviews, 2020, 202: 103091. doi: 10.1016/j.earscirev.2020.103091
|
[27] |
WANG Song, WANG Guiwen, HUANG Liliang, et al. Logging evaluation of lamina structure and reservoir quality in shale oil reservoir of Fengcheng Formation in Mahu Sag, China[J]. Marine and Petroleum Geology, 2021, 133: 105299. doi: 10.1016/j.marpetgeo.2021.105299
|
[28] |
郭佩, 柏淑英, 李长志, 等. 准噶尔盆地玛湖凹陷风城组页岩自生长英质矿物的成因机理及其储层改造意义[J]. 地质学报, 2023, 97(7): 2311-2331.
GUO Pei, BAI Shuying, LI Changzhi, et al. Formation of authigenic quartz and feldspars in the Fengcheng Formation of the Mahu Sag, Junggar Basin, and their reservoir modification signi-ficance[J]. Acta Geologica Sinica, 2023, 97(7): 2311-2331.
|
[29] |
贾凡建. 准噶尔盆地克夏地区二叠系风城组沉积相及沉积模式[J]. 断块油气田, 2016, 23(6): 681-686.
JIA Fanjian. Sedimentary facies and depositional model of Permian Fengcheng Formation in Kexia area of northwest margin of Junggar Basin[J]. Fault-Block Oil and Gas Field, 2016, 23(6): 681-686.
|
[30] |
黄玉越, 王贵文, 宋连腾, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩储集层裂缝测井识别与有效性分析[J]. 古地理学报, 2022, 24(3): 540-555.
HUANG Yuyue, WANG Guiwen, SONG Lianteng, et al. Fracture logging identification and effectiveness analysis of shale reservoir of the Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(3): 540-555.
|
[31] |
倪敏婕, 祝贺暄, 何文军, 等. 准噶尔盆地玛湖凹陷风城组沉积环境与沉积模式分析[J]. 现代地质, 2023, 37(5): 1194-1207.
NI Minjie, ZHU Hexuan, HE Wenjun, et al. Depositional environment and sedimentary model of the Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Geoscience, 2023, 37(5): 1194-1207.
|
[32] |
张益粼, 王贵文, 宋连腾, 等. 页岩岩相测井表征方法: 以准噶尔盆地玛湖凹陷风城组为例[J]. 地球物理学进展, 2023, 38(1): 393-408.
ZHANG Yilin, WANG Guiwen, SONG Lianteng, et al. Logging identification method of shale lithofacies: a study of Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Progress in Geophysics, 2023, 38(1): 393-408.
|
[33] |
CANFIELD D E, RAISWELL R, WESTRICH J T, et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chemical Geology, 1986, 54(1/2): 149-155.
|
[34] |
沈丽丽, 孙婷婷, 郭晓宇, 等. 南极湖泊沉积物中有机硫组成及其与铁硫化物的联系[J]. 湖泊科学, 2022, 34(1): 142-150.
SHEN Lili, SUN Tingting, GUO Xiaoyu, et al. Organic sulfur compositions and their relationships with iron sulfides in Antarctic lake sediments[J]. Journal of Lake Sciences, 2022, 34(1): 142-150.
|
[35] |
何文渊, 崔宝文, 张金友, 等. 松辽盆地北部嫩江组中—低成熟页岩油地质特征及勘探突破[J]. 石油学报, 2024, 45(6): 900-913.
HE Wenyuan, CUI Baowen, ZHANG Jinyou, et al. Geological characteristics and exploration breakthroughs of the middle to low mature shale oil of Nenjiang Formation in northern Songliao Basin[J]. Acta Petrolei Sinica, 2024, 45(6): 900-913.
|
[36] |
刘翰林, 邹才能, 邱振, 等. 陆相黑色页岩沉积环境及有机质富集机制: 以鄂尔多斯盆地长7段为例[J]. 沉积学报, 2023, 41(6): 1810-1829.
LIU Hanlin, ZOU Caineng, QIU Zhen, et al. Sedimentary depositional environment and organic matter enrichment mechanism of lacustrine black shales: a case study of the Chang 7 member in the Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1810-1829.
|
[37] |
CAO Hansheng, KAUFMAN A J, SHAN Xuanlong, et al. Sulfur isotope constraints on marine transgression in the lacustrine Upper Cretaceous Songliao Basin, Northeastern China[J]. Palaeogeo-graphy, Palaeoclimatology, Palaeoecology, 2016, 451: 152-163. doi: 10.1016/j.palaeo.2016.02.041
|
[38] |
CHEN Ruiqian, LIU Guangdi, SHANG Fei, et al. Variations in hydrocarbon generating potential of the Chang 7 shale: evidence from pyrite morphology and sulfur isotope[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107747. doi: 10.1016/j.petrol.2020.107747
|
[39] |
王建功, 张永庶, 李翔, 等. 柴达木盆地西部渐新统纹理石沉积特征与原位成藏[J]. 石油学报, 2020, 41(8): 940-959.
WANG Jiangong, ZHANG Yongshu, LI Xiang, et al. Sedimentary characteristics and in-situ accumulation of the Oligocene laminites in the western Qaidam Basin[J]. Acta Petrolei Sinica, 2020, 41(8): 940-959.
|
[40] |
李鹏, 刘全有, 毕赫, 等. 火山活动与海侵影响下的典型湖相页岩有机质保存差异分析[J]. 地质学报, 2021, 95(3): 632-642.
LI Peng, LIU Quanyou, BI He, et al. Analysis of the difference in organic matter preservation in typical lacustrine shale under the influence of volcanism and transgression[J]. Acta Geologica Sinica, 2021, 95(3): 632-642.
|
[41] |
王梓毅, 付金华, 刘显阳, 等. 鄂尔多斯盆地上三叠统延长组7段埋藏期热液活动对页岩油储层的影响[J]. 石油与天然气地质, 2023, 44(4): 899-909.
WANG Ziyi, FU Jinhua, LIU Xianyang, et al. The influence of hydrothermal activities on shale oil reservoirs during the burial period of the Upper Triassic Chang 7 Member, Ordos Basin[J]. Oil & Gas Geology, 2023, 44(4): 899-909.
|
[42] |
商斐, 周海燕, 刘勇, 等. 松辽盆地嫩江组泥页岩有机质富集模式探讨: 以嫩江组一、二段油页岩为例[J]. 中国地质, 2020, 47(1): 236-248.
SHANG Fei, ZHOU Haiyan, LIU Yong, et al. A discussion on the organic matter enrichment model of the Nenjiang Formation, Songliao Basin: a case study of oil shale in the 1st and 2nd members of the Nenjiang Formation[J]. Geology in China, 2020, 47(1): 236-248.
|
[43] |
卢贤志, 沈俊, 郭伟, 等. 中上扬子地区奥陶纪—志留纪之交火山作用对有机质富集的影响[J]. 地球科学, 2021, 46(7): 2329-2340.
LU Xianzhi, SHEN Jun, GUO Wei, et al. Influence of mercury geochemistry and volcanism on the enrichment of organic matter near the Ordovician Silurian transition in the Middle and Upper Yangtze[J]. Earth Science, 2021, 46(7): 2329-2340.
|
[44] |
余冲, 徐志方, 刘文景, 等. 韩江流域河水地球化学特征与硅酸盐岩风化: 风化过程硫酸作用[J]. 地球与环境, 2017, 45(4): 390-398.
YU Chong, XU Zhifang, LIU Wenjing, et al. River water geochemistry of Hanjiang River, implications for silicate weathering and sulfuric acid participation[J]. Earth and Environment, 2017, 45(4): 390-398.
|
[45] |
NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0
|
[46] |
唐文斌, 尤新才, 张元元, 等. 玛湖凹陷下二叠统风城组碱湖沉积时限厘定[J]. 沉积学报, 2024, 42(5): 1568-1577.
TANG Wenbin, YOU Xincai, ZHANG Yuanyuan, et al. Controlled depositional age of an alkaline lake in Lower Permian Fengcheng Formation, Mahu Sag[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1568-1577.
|
[47] |
支倩, 任蕊, 段丰浩, 等. 西准噶尔南部晚石炭世中—酸性火山岩成因机制及其对准噶尔洋闭合时限的约束[J]. 地学前缘, 2024, 31(3): 40-58.
ZHI Qian, REN Rui, DUAN Fenghao, et al. Genetic mechanism of Late Carboniferous intermediate-acid volcanic rocks in southern West Junggar and its constraints on the closure of the Junggar Ocean[J]. Earth Science Frontiers, 2024, 31(3): 40-58.
|
[48] |
王博, 赵国春. 古亚洲洋的最终闭合时限: 来自白乃庙岛弧带东段二叠纪—三叠纪岩浆作用的证据[J]. 西北大学学报(自然科学版), 2021, 51(6): 1019-1030.
WANG Bo, ZHAO Guochun. Final closure of the Paleo-Asian Ocean: constraints from Permian-Triassic magmatism in the eastern segment of the Bainaimiao Arc Belt[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(6): 1019-1030.
|
[49] |
HORITA J, ZIMMERMANN H, HOLLAND H D. Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3733-3756. doi: 10.1016/S0016-7037(01)00884-5
|
[50] |
FIKE D A, BRADLEY A S, ROSE C V. Rethinking the ancient sulfur cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 593-622. doi: 10.1146/annurev-earth-060313-054802
|
[51] |
李庆宽, 樊启顺, 山发寿, 等. 海陆相蒸发岩硫同位素值变化和地球化学应用[J]. 盐湖研究, 2018, 26(1): 73-80.
LI Qingkuan, FAN Qishun, SHAN Fashou, et al. The variation of sulfur isotope in marine-continental evaporites and its geoche-mical applications[J]. Journal of Salt Lake Research, 2018, 26(1): 73-80.
|
[52] |
唐勇, 郑孟林, 王霞田, 等. 准噶尔盆地玛湖凹陷风城组烃源岩沉积古环境[J]. 天然气地球科学, 2022, 33(5): 677-692.
TANG Yong, ZHENG Menglin, WANG Xiatian, et al. Sedimentary paleoenvironment of source rocks of Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Natural Gas Geoscience, 2022, 33(5): 677-692.
|
[53] |
王小军, 冯右伦, 杨森, 等. 玛湖凹陷二叠系风城组细粒沉积岩米氏旋回识别及意义[J]. 西北大学学报(自然科学版), 2022, 52(1): 128-143.
WANG Xiaojun, FENG Youlun, YANG Sen, et al. Identification and significance of Milankovitch astronomical cycles of fine-grained sedimentary rocks, Permian Fengcheng Formation in Mahu Sag[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(1): 128-143.
|
[54] |
郑永飞, 傅斌, 张学华, 等. 岩浆去气作用的碳硫同位素效应[J]. 地质科学, 1996, 31(1): 43-53.
ZHENG Yongfei, FU Bin, ZHANG Xuehua, et al. Effects of magma degassing on the carbon and sulfur isotope compositions of igneous rocks[J]. Scientia Geologica Sinica, 1996, 31(1): 43-53.
|