Citation: | ZHOU Bing, LUN Zengmin, ZHANG Jie, TANG Yongqiang, QI Yibin, XIAO Pufu, YIN Xia. Research status of self-sealing mechanisms of caprocks and fractures during CO2 geological storage[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(5): 1177-1184. doi: 10.11781/sysydz2025051177 |
[1] |
CELIA M A, BACHU S, NORDBOTTEN J M, et al. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations[J]. Water Resources Research, 2015, 51(9): 6846-6892. doi: 10.1002/2015WR017609
|
[2] |
BLACKFORD J, STAHL H, BULL J M, et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage[J]. Nature Climate Change, 2014, 4(11): 1011-1016. doi: 10.1038/nclimate2381
|
[3] |
MONASTERSKY R. Seabed scars raise questions over carbon-storage plan[J]. Nature, 2013, 504(7480): 339-340. doi: 10.1038/504339a
|
[4] |
DELKHAHI B, NASSERY H R, VILARRASA V, et al. Impacts of natural CO2 leakage on groundwater chemistry of aquifers from the Hamadan Province, Iran[J]. International Journal of Greenhouse Gas Control, 2020, 96: 103001. doi: 10.1016/j.ijggc.2020.103001
|
[5] |
OLDENBURG C M. Screening and ranking framework for geologic CO2 storage site selection on the basis of health, safety, and environmental risk[J]. Environmental Geology, 2008, 54(8): 1687-1694. doi: 10.1007/s00254-007-0947-8
|
[6] |
ZHAO Xiaohong, DENG Hongzhang, WANG Wenke, et al. Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet Plateau[J]. Scientific Reports, 2017, 7(1): 3001. doi: 10.1038/s41598-017-02500-x
|
[7] |
FARRAR C D, SOREY M L, EVANS W C, et al. Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest[J]. Nature, 1995, 376(6542): 675-678. doi: 10.1038/376675a0
|
[8] |
HILL P M. Possible asphyxiation from carbon dioxide of a cross-country skier in eastern California: a deadly volcanic hazard[J]. Wilderness & Environmental Medicine, 2000, 11(3): 192-195.
|
[9] |
IEA GHG. CCS site characterisation criteria[R]. Cheltenham: IEA Greenhouse Gas R&D Programme, 2009.
|
[10] |
CASSEM. CO2 aquifer storage site evaluation and monitoring[R]. Edinburgh: Heriot-Watt University, 2011.
|
[11] |
DELPRAT-JANNAUD F, KORRE A, SHI J Q, et al. State-of-the-art review of CO2 storage site selection and characterization methods[R]. CGS Europe, 2013.
|
[12] |
CHADWICK A, ARTS R, BERNSTONE C, et al. Best practice for the storage of CO2 in saline aquifers-observations and guidelines from the SACS and CO2STORE projects[R]. Hawthornes: British Geological Survey, 2008.
|
[13] |
NETL. Site screening, selection, and initial characterisation for storage of CO2 in deep geologic formations (No. DOE/NETL-401/090808)[R]. National Energy Technology Laboratory, 2010.
|
[14] |
METZ B, DAVIDSON O, DE CONINCK H, et al. Carbon dioxide capture and storage[R]. Cambridge: Cambridge University Press, 2005.
|
[15] |
NORDBOTTEN J M, KAVETSKI D, CELIA M A, et al. Model for CO2 leakage including multiple geological layers and multiple leaky wells[J]. Environmental Science & Technology, 2009, 43(3): 743-749.
|
[16] |
NEUFELD J A, VELLA D, HUPPERT H E, et al. Leakage from gravity currents in a porous medium. Part 1. A localized sink[J]. Journal of Fluid Mechanics, 2011, 666: 391-413. doi: 10.1017/S002211201000488X
|
[17] |
HOU Zhangshuan, ROCKHOLD M L, MURRAY C J. Evaluating the impact of caprock and reservoir properties on potential risk of CO2 leakage after injection[J]. Environmental Earth Sciences, 2012, 66(8): 2403-2415. doi: 10.1007/s12665-011-1465-2
|
[18] |
ZEIDOUNI M. Analytical model of well leakage pressure perturbations in a closed aquifer system[J]. Advances in Water Resources, 2014, 69: 13-22. doi: 10.1016/j.advwatres.2014.03.004
|
[19] |
DIAO Yujie, ZHANG Senqi, WANG Yongsheng, et al. Short-term safety risk assessment of CO2 geological storage projects in deep saline aquifers using the Shenhua CCS Demonstration Project as a case study[J]. Environmental Earth Sciences, 2015, 73(11): 7571-7586. doi: 10.1007/s12665-014-3928-8
|
[20] |
WOODS A W, HESSE M, BERKOWITZ R, et al. Multiple steady states in exchange flows across faults and the dissolution of CO2[J]. Journal of Fluid Mechanics, 2015, 769: 229-241. doi: 10.1017/jfm.2015.100
|
[21] |
SHAKIBA M, HOSSEINI S A. Detection and characterization of CO2 leakage by multi-well pulse testing and diffusivity tomography maps[J]. International Journal of Greenhouse Gas Control, 2016, 54: 15-28. doi: 10.1016/j.ijggc.2016.08.015
|
[22] |
DEJAM M, HASSANZADEH H. Diffusive leakage of brine from aquifers during CO2 geological storage[J]. Advances in Water Resources, 2018, 111: 36-57. doi: 10.1016/j.advwatres.2017.10.029
|
[23] |
BERNE P, BACHAUD P, FLEURY M. Diffusion properties of carbonated caprocks from the Paris Basin[J]. Oil & Gas Science and Technology, 2010, 65(3): 473-484.
|
[24] |
GAUS I, AZAROUAL M, CZERNICHOWSKI-LAURIOL I. Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea)[J]. Chemical Geology, 2005, 217(3/4): 319-337.
|
[25] |
GHERARDI F, XU T F, PRUESS K. Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir[J]. Chemical Geology, 2007, 244(1/2): 103-129.
|
[26] |
YOKSOULIAN L E, FREIBURG J T, BUTLER S K, et al. Mineralogical alterations during laboratory-scale carbon sequestration experiments for the Illinois Basin[J]. Energy Procedia, 2013, 37: 5601-5611. doi: 10.1016/j.egypro.2013.06.482
|
[27] |
KAMPMAN N, BICKLE M, WIGLEY M, et al. Fluid flow and CO2-fluid-mineral interactions during CO2-storage in sedimentary basins[J]. Chemical Geology, 2014, 369: 22-50. doi: 10.1016/j.chemgeo.2013.11.012
|
[28] |
FINKBEINER T, ZOBACK M, FLEMINGS P, et al. Stress, pore pressure, and dynamically constrained hydrocarbon columns in the South Eugene Island 330 field, northern Gulf of Mexico[J]. AAPG Bulletin, 2001, 85(6): 1007-1031.
|
[29] |
MCDERMOTT C I, EDLMANN K, HASZELDINE R S. Predicting hydraulic tensile fracture spacing in strata-bound systems[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 63: 39-49. doi: 10.1016/j.ijrmms.2013.06.004
|
[30] |
RUTQVIST J, TSANG C F. A study of caprock hydromechanical changes associated with CO2-injection into a brine formation[J]. Environmental Geology, 2002, 42(2): 296-305.
|
[31] |
CHIARAMONTE L, ZOBACK M D, FRIEDMANN J, et al. Seal integrity and feasibility of CO2 sequestration in the Teapot Dome EOR pilot: geomechanical site characterization[J]. Environmental Geology, 2008, 54(8): 1667-1675. doi: 10.1007/s00254-007-0948-7
|
[32] |
RINALDI A P, RUTQVIST J. Modeling of deep fracture zone opening and transient ground surface uplift at KB-502 CO2 injection well, In Salah, Algeria[J]. International Journal of Greenhouse Gas Control, 2013, 12: 155-167. doi: 10.1016/j.ijggc.2012.10.017
|
[33] |
VAN NOORT R, WOLTERBEEK T K T, DRURY M R, et al. The force of crystallization and fracture propagation during in-situ carbonation of peridotite[J]. Minerals, 2017, 7(10): 190. doi: 10.3390/min7100190
|
[34] |
IYER K, JAMTVEIT B, MATHIESEN J, et al. Reaction-assisted hierarchical fracturing during serpentinization[J]. Earth and Planetary Science Letters, 2008, 267(3/4): 503-516.
|
[35] |
JAMTVEIT B, PUTNIS C V, MALTHE-SØRENSSEN A. Reaction induced fracturing during replacement processes[J]. Contributions To Mineralogy and Petrology, 2009, 157(1): 127-133. doi: 10.1007/s00410-008-0324-y
|
[36] |
GRATIER J P, FRERY E, DESCHAMPS P, et al. How travertine veins grow from top to bottom and lift the rocks above them: the effect of crystallization force[J]. Geology, 2012, 40(11): 1015-1018. doi: 10.1130/G33286.1
|
[37] |
PLVMPER O, RØYNE A, MAGRASÓ A, et al. The interface-scale mechanism of reaction-induced fracturing during serpentinization[J]. Geology, 2012, 40(12): 1103-1106. doi: 10.1130/G33390.1
|
[38] |
CAVANAGH A J, HASZELDINE R S. The Sleipner storage site: capillary flow modeling of a layered CO2 plume requires fractured shale barriers within the Utsira Formation[J]. International Journal of Greenhouse Gas Control, 2014, 21: 101-112. doi: 10.1016/j.ijggc.2013.11.017
|
[39] |
KAMPMAN N, BUSCH A, BERTIER P, et al. Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks[J]. Nature Communication, 2016, 7(1): 12268. doi: 10.1038/ncomms12268
|
[40] |
ROHMER J, PLUYMAKERS A, RENARD F. Mechano-chemical interactions in sedimentary rocks in the context of CO2 storage: weak acid, weak effects?[J]. Earth-Science Reviews, 2016, 157: 86-110. doi: 10.1016/j.earscirev.2016.03.009
|
[41] |
ESPINOZA D N, SANTAMARINA J C. CO2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage[J]. International Journal of Greenhouse Gas Control, 2017, 66: 218-229. doi: 10.1016/j.ijggc.2017.09.019
|
[42] |
HOU Lianhua, YU Zhichao, LUO Xia, et al. self-sealing of caprocks during CO2 geological sequestration[J]. Energy, 2022, 252: 124064. doi: 10.1016/j.energy.2022.124064
|
[43] |
MIOCIC J M, GILFILLAN S M V, ROBERTS J J, et al. Controls on CO2 storage security in natural reservoirs and implications for CO2 storage site selection[J]. International Journal of Greenhouse Gas Control, 2016, 51: 118-125. doi: 10.1016/j.ijggc.2016.05.019
|
[44] |
YASUHARA H, KINOSHITA N, NAKASHIMA S, et al. Evolution of mechanical and hydraulic properties in sandstone induced by mineral trapping[C]//Proceedings of the 48th U.S. Rock Mechanics/Geomechanics Symposium. Minneapolis: ARMA, 2014.
|
[45] |
EDLMANN K, HASZELDINE S, MCDERMOTT C I. Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow[J]. Environmental Earth Sciences, 2013, 70(7): 3393-3409. doi: 10.1007/s12665-013-2407-y
|
[46] |
ELKHOURY J E, DETWILER R L, AMELI P. Can a fractured caprock self-heal?[J]. Earth and Planetary Science Letters, 2015, 417: 99-106. doi: 10.1016/j.epsl.2015.02.010
|
[47] |
HANGX S J T, PLUYMAKERS A M H, TEN HOVE A, et al. The effects of lateral variations in rock composition and texture on anhydrite caprock integrity of CO2 storage systems[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 69: 80-92. doi: 10.1016/j.ijrmms.2014.03.001
|
[48] |
BUSCH A, ALLES S, GENSTERBLUM Y, et al. Carbon dioxide storage potential of shales[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 297-308. doi: 10.1016/j.ijggc.2008.03.003
|
[49] |
KIVI I R, MAKHNENKO R Y, VILARRASA V. Two-phase flow mechanisms controlling CO2 intrusion into Shaly caprock[J]. Transport in Porous Media, 2022, 141(3): 771-798. doi: 10.1007/s11242-022-01748-w
|
[50] |
MARBLER H, ERICKSON K P, SCHMIDT M, et al. Geomechanical and geochemical effects on sandstones caused by the reaction with supercritical CO2: an experimental approach to in situ conditions in deep geological reservoirs[J]. Environmental Earth Sciences, 2013, 69(6): 1981-1998. doi: 10.1007/s12665-012-2033-0
|
[51] |
NILSEN H M, LIE K A, ANDERSEN O. Analysis of CO2 trapping capacities and long-term migration for geological formations in the Norwegian North Sea using MRST-CO2Lab[J]. Computers & Geosciences, 2015, 79: 15-26.
|
[52] |
AKHBARI D, HESSE M A. Causes of underpressure in natural CO2 reservoirs and implications for geological storage[J]. Geology, 2017, 45(1): 47-50. doi: 10.1130/G38362.1
|
[53] |
BASTIAENS W, BERNIER F, LI X L. SELFRAC: Experiments and conclusions on fracturing, self-healing and self-sealing processes in clays[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8/14): 600-615.
|
[54] |
BOCK H, DEHANDSCHUTTER B, MARTIN C D, et al. Self-sealing of fractures in argillaceous formations in the context of geological disposal of radioactive waste[R]. OECD, 2010.
|
[55] |
NGUYEN P, GUTHRIE JR G D, CAREY J W. Experimental validation of self-sealing in wellbore cement fractures exposed to high-pressure, CO2-saturated solutions[J]. International Journal of Greenhouse Gas Control, 2020, 100: 103112. doi: 10.1016/j.ijggc.2020.103112
|
[56] |
BRUNET J P L, LI Li, KARPYN Z T, et al. Fracture opening or self-sealing: critical residence time as a unifying parameter for cement-CO2-brine interactions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 25-37. doi: 10.1016/j.ijggc.2016.01.024
|
[57] |
CAO Peilin, KARPYN Z T, LI Li. Self-healing of cement fractures under dynamic flow of CO2-rich brine[J]. Water Resources Research, 2015, 51(6): 4684-4701. doi: 10.1002/2014WR016162
|
[58] |
GUTHRIE G D JR, PAWAR R J, CAREY J W, et al. The mechanisms, dynamics, and implications of self-sealing and CO2 resis-tance in wellbore cements[J]. International Journal of Greenhouse Gas Control, 2018, 75: 162-179. doi: 10.1016/j.ijggc.2018.04.006
|
[59] |
IYER J, WALSH S D C, HAO Yue, et al. Incorporating reaction-rate dependence in reaction-front models of wellbore-cement/carbonated-brine systems[J]. International Journal of Greenhouse Gas Control, 2017, 59: 160-171. doi: 10.1016/j.ijggc.2017.01.019
|
[60] |
LIU Quanyou, ZHU Dongya, JIN Zhijun, et al. Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs[J]. Renewable and Sustainable Energy Reviews, 2023, 171: 113000. doi: 10.1016/j.rser.2022.113000
|
[61] |
OKUYAMA Y, FUNATSU T, FUJⅡ T, et al. Dawsonite and other carbonate veins in the Cretaceous Izumi Group, SW Japan: a natural support for fracture self-sealing in mudstone caprock in CGS?[J]. Procedia Earth and Planetary Science, 2013, 7: 636-639. doi: 10.1016/j.proeps.2013.03.060
|
[62] |
ABDOULGHAFOUR H, LUQUOT L, GOUZE P. Characterization of the mechanisms controlling the permeability changes of fractured cements flowed through by CO2-rich brine[J]. Environmental Science & Technology, 2013, 47(18): 10332-10338.
|
[63] |
ABDOULGHAFOUR H, GOUZE P, LUQUOT L, et al. Characterization and modeling of the alteration of fractured class-G Portland cement during flow of CO2-rich brine[J]. International Journal of Greenhouse Gas Control, 2016, 48: 155-170. doi: 10.1016/j.ijggc.2016.01.032
|
[64] |
HUERTA N J, HESSE M A, BRYANT S L, et al. Reactive transport of CO2K_saturated water in a cement fracture: application to wellbore leakage during geologic CO2 storage[J]. International Journal of Greenhouse Gas Control, 2016, 44: 276-289. doi: 10.1016/j.ijggc.2015.02.006
|
[65] |
LUQUOT L, ABDOULGHAFOUR H, GOUZE P. Hydro-dynamically controlled alteration of fractured Portland cements flowed by CO2-rich brine[J]. International Journal of Greenhouse Gas Control, 2013, 16: 167-179. doi: 10.1016/j.ijggc.2013.04.002
|
[66] |
WALSH S D, DU FRANE W L, Mason H E, et al. Permeability of wellbore-cement fractures following degradation by carbonated brine[J]. Rock Mechanics and Rock Engineering, 2013, 46: 455-464. doi: 10.1007/s00603-012-0336-9
|
[67] |
WOLTERBEEK T K T, PEACH C J, RAOOF A, et al. Reactive transport of CO2-rich fluids in simulated wellbore interfaces: flow-through experiments on the 1-6 m length scale[J]. International Journal of Greenhouse Gas Control, 2016, 54: 96-116. doi: 10.1016/j.ijggc.2016.08.034
|
[68] |
WOLTERBEEK T K T, RUCKERT F, VAN MOORSEL S G, et al. Reactive transport and permeability evolution in wellbore defects exposed to periodic pulses of CO2-rich water[J]. International Journal of Greenhouse Gas Control, 2019, 91: 102835. doi: 10.1016/j.ijggc.2019.102835
|
[69] |
VAFAIE A, CAMA J, SOLER J M, et al. Chemo-hydro-mechanical effects of CO2 injection on reservoir and seal rocks: a review on laboratory experiments[J]. Renewable and Sustainable Energy Reviews, 2023, 178: 113270. doi: 10.1016/j.rser.2023.113270
|
[70] |
隆辉, 曾溅辉, 刘亚洲, 等. 可视化三维物理模拟实验技术在油气成藏研究中的应用: 以塔里木盆地顺北地区S53-2井为例[J]. 石油实验地质, 2024, 46(5): 1110-1122. doi: 10.11781/sysydz2024051110
LONG Hui, ZENG Jianhui, LIU Yazhou, et al. Application of visual 3D physical simulation experiment technology in oil and gas accumulation research: a case study of well S53-2 in Shunbei area of Tarim Basin[J]. Petroleum Geology & Experiment, 2024, 46(5): 1110-1122. doi: 10.11781/sysydz2024051110
|
[71] |
NEWELL P, ILGEN A G. Overview of geological carbon storage (GCS)[M]//NEWELL P, ILGEN A G. Science of Carbon Storage in Deep Saline Formations. Amsterdam: Elsevier, 2019.
|