Please wait a minute...
Petroleum Geology & Experiment  2019, Vol. 41 Issue (2): 157-164    DOI: 10.11781/sysydz201902157
Current Issue | Archive | Adv Search |
Prospects for ultra-deep oil and gas in the “deep burial and high pressure” Tarim Basin
GU Yi, WAN Yanglu, HUANG Jiwen, ZHUANG Xinbing, WANG Bin, LI Miao
Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi, Jiangsu 214126, China
Download: PDF (990 KB)     
Export: BibTeX | EndNote (RIS)      
Abstract  Ultra-deep oil and gas exploration technology is developing, and the thermal evolution of source rocks under high pressure in the Tarim Basin has become the focus of ultra-deep oil and gas resource evaluation and hydrocarbon generation theory research. Simulated hydrocarbon generation from source rocks under high temperature and pressure, combined with the geological conditions of “deep burial and high pressure” of the Shuntuoguole Uplift in the Tarim Basin, a study was carried out on the hydrocarbon generation, evolution and retardation under high pressure of marine source rocks in the Tarim Basin. Ever since the Yanshan period, the Cambrian source rocks still have geological conditions for generating high-maturity liquid hydrocarbon in the Shuntuoguole Uplift. The boundary conditions for thermal evolution retardation include: ①Long-term stable closed system; ②Source rocks deeper than 6 500 m with the fluid pressure above 60 MPa, and a low temperature with a gradient less than 20 ℃/km in the later period; ③Marine source rocks with type I and type Ⅱ1 kerogen. The ultra-deep Cambrian marine source rocks in the Tarim Basin are mainly type I and type Ⅱ1 kerogen, and the degree of inhibition is more obvious under high pressure. The scope and potential of the oil generation window are much higher than the traditional theoretical value. Therefore, the prospect for ultra-deep oil and gas exploration is considerable.
Key wordsthermal evolution of organic matter      hydrocarbon evolution and retardation mode under high pressure      ultra-deep formation      oil and gas exploration potential      source rock      Cambrian      Tarim Basin     
Received: 03 January 2019      Published: 22 March 2019
:  TE122.3  
Cite this article:

.Prospects for ultra-deep oil and gas in the “deep burial and high pressure” Tarim Basin[J].Petroleum Geology & Experiment,2019,41(2):157-164.

URL:

http://www.sysydz.net/EN/10.11781/sysydz201902157     OR     http://www.sysydz.net/EN/Y2019/V41/I2/157

[1] 焦方正.塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J].石油与天然气地质,2018,39(2):207-216. JIAO Fangzheng.Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area,Tarim Basin[J].Oil & Gas Geology,2018,39(2):207-216.
[2] 翟晓先,顾忆,钱一雄,等.塔里木盆地塔深1井寒武系油气地球化学特征[J].石油实验地质,2007,29(4):329-333. ZHAI Xiaoxian,GU Yi,QIAN Yixiong,et al.Geochemical characteristics of the Cambrian oil and gas in well Tashen 1,the Tarim Basin[J].Petroleum Geology & Experiment,2007,29(4):329-333.
[3] ZHU Guangyou,MILKOV A V,CHEN Feiran,et al.Non-cracked oil in ultra-deep high-temperature reservoirs in the Tarim basin,China[J].Marine and Petroleum Geology,2018,89:252-262.
[4] 邓尚,李慧莉,张仲培,等.塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J].石油与天然气地质,2018,39(5):878-888. DENG Shang,LI Huili,ZHANG Zhongpei,et al.Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings,Tarim Basin[J].Oil & Gas Geology,2018,39(5):878-888.
[5] TISSOT B P,WELTE D H.Petroleum formation and occurren[M].Berlin Heidelber:Springer-Verlag,1984.
[6] MONTHIOUX M,LANDAIS P,DURAND B.Comparison between extracts from natural and artificial maturation series of Mahakam delta coals[J].Organic Geochemistry,1986,10(1/3):299-311.
[7] BRAUN R L,BURNHAM A K.Mathematical model of oil generation,degradation,and expulsion[J].Energy & Fuels,1990,4(2):132-146.
[8] FANG Hao,SUN Yongchuan,LI Sitian,et al.Overpressure retardation of organic-matter maturation and petroleum generation:A case study from the Yinggehai and Qiongdongnan Basins,South China Sea[J].AAPG bulletin,1995,79(4):551-562.
[9] MCTAVISH R A.The role of overpressure in the retardation of organic matter maturation[J].Journal of Petroleum Geology,1998,21(2):153-186.
[10] SHUAI Yanhua,PENG Ping'an,ZOU Yanrong.Influence of pressure on stable carbon isotope ratio and production yield of coal-derived methane[J].Fuel,2006,85(5/6):860-866.
[11] MCTAVISH R A.Pressure retardation of vitrinite diagenesis,offshore north-west Europe[J].Nature,1978,271(5646):648-650.
[12] 潘长春,周中毅,范善发,等.准噶尔盆地热历史[J].地球化学,1997,26(6):1-7. PAN Changchun,ZHOU Zhongyi,FAN Shanfa,et al.Thermal history of Junggar Basin[J].Geochimica,1997,26(6):1-7.
[13] 查明,曲江秀,张卫海.异常高压与油气成藏机理[J].石油勘探与开发,2002,29(1):19-23. ZHA Ming,QU Jiangxiu,ZHANG Weihai.The relationship between overpressure and reservoir forming mechanism[J].Petroleum Exploration and Development,2002,29(1):19-23.
[14] 郝芳,邹华耀,方勇,等.超压环境有机质热演化和生烃作用机理[J].石油学报,2006,27(5):9-18. HAO Fang,ZOU Huayao,FANG Yong,et al.Kinetics of organic matter maturation and hydrocarbon generation in overpressure environment[J].Acta Petrolei Sinica,2006,27(5):9-18.
[15] HE Sheng,MIDDLETON M.Heat flow and thermal maturity modelling in the Northern Carnarvon Basin,North West Shelf,Australia[J].Marine and Petroleum Geology,2002,19(9):1073-1088.
[16] LAW B E.Basin-centered gas systems[J].AAPG Bulletin,2002,86(11):1891-1919.
[17] MICHELS R,LANDAIS P,PHILP R P,et al.Effects of pressure on organic matter maturation during confined pyrolysis of Woodford kerogen[J].Energy & Fuels,1994,8(3):741-754.
[18] PRICE L C,WENGER L M.The influence of pressure on petroleum generation and maturation as suggested by aqueous pyro-lysis[J].Organic Geochemistry,1992,19(1/3):141-159.
[19] CARR A D.A vitrinite reflectance kinetic model incorporating overpressure retardation[J].Marine and Petroleum Geology,1999,16(4):355-377.
[20] UGUNA C N,CARR A D,SNAPE C E,et al.A laboratory pyro-lysis study to investigate the effect of water pressure on hydrocarbon generation and maturation of coals in geological basins[J].Organic Geochemistry,2012,52:103-113.
[21] UGUNA C N,CARR A D,SNAPE C E,et al.High pressure water pyrolysis of coal to evaluate the role of pressure on hydrocarbon generation and source rock maturation at high maturities under geological conditions[J].Organic Geochemistry,2015,78:44-51.
[22] 吴远东,张中宁,吉利明,等.流体压力对半开放体系有机质模拟生烃产率和镜质体反射率的影响[J].天然气地球科学,2016,27(5):883-891. WU Yuandong,ZHANG Zhongning,JI Liming,et al.The changes of hydrocarbon yields and RO for source rock in the semi-open simulation with increasing of fluids pressure[J].Natural Gas Geoscience,2016,27(5):883-891.
[23] 郑伦举,秦建中,何生,等.地层孔隙热压生排烃模拟实验初步研究[J].石油实验地质,2009,31(3):296-302. ZHENG Lunju,QIN Jianzhong,He Sheng,et al.Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion[J].Petroleum Geology & Experiment,2009,31(3):296-302.
[24] 郑伦举,关德范,郭小文,等.影响海相烃源岩热解生烃过程的地质条件[J].地球科学(中国地质大学学报),2015,40(5):909-917. ZHENG Lunju,GUAN Defan,GUO Xiaowen,et al.Key geolo-gical conditions affecting pyrolysis experiments of marine source rocks for hydrocarbon generation[J].Earth Science(Journal of China University of Geosciences),2015,40(5):909-917.
[25] 马中良,郑伦举,李志明.烃源岩有限空间温压共控生排烃模拟实验研究[J].沉积学报,2012,30(5):955-963. MA Zhongliang,ZHENG Lunju,LI Zhiming.The thermocompre-ssion simulation experiment of source rock hydrocarbon gene-ration and expulsion in formation porosity[J].Acta Sedimentologica Sinica,2012,30(5):955-963.
[26] CHANDRA D.Reflectance of coals carbonized under pressure[J].Economic Geology,1965,60(3):621-629.
[27] HRYCKOWIAN E,DUTCHER R R,DACHILLE F.Experimental studies of anthracite coals at high pressures and temperatures[J].Economic Geology,1967,62(4):517-539.
[28] 何春民,李腾飞.压力对有机质生烃演化作用的研究进展[J].沉积学报,2018,36(5):1040-1048. HE Chunming,LI Tengfei.Studying advances in effect of pressure on organic matters maturation[J].Acta Sedimentologica Sinica,2018,36(5):1040-1048.
[29] HILL R J,JENDEN P D,TANG Y C,et al.Influence of pressure on pyrolysis of coal[M]//MUKHOPADHYAY P K, DOW W G. Vitrinite Reflectance as a Maturity Parameter.Washington:American Chemical Society,1994:161-193.
[30] WU Yuandong,JI Liming,HE Cong,et al.The effects of pressure and hydrocarbon expulsion on hydrocarbon generation during hydrous pyrolysis of type-I kerogen in source rock[J].Journal of Natural Gas Science and Engineering,2016,34:1215-1224.
[31] 吴远东,张中宁,孙丽娜,等.半开放体系下流体压力对烃源岩HTHP模拟产物产率及镜质体反射率的影响[J].天然气地球科学,2016,27(10):1904-1912. WU Yuandong,ZHANG Zhongning,SUN Lina,et al.Effect of liquids pressure on hydrocarbon yield and RO of source rock HTHP simulation experiment in semi-open system[J].Natural Gas Geoscience,2016,27(10):1904-1912.
[32] BAYON R L,BREY G P,ERNST W G,et al.Experimental kinetic study of organic matter maturation:Time and pressure effects on vitrinite reflectance at 400℃[J].Organic Geochemistry,2012,42(4):340-355.
[33] 郑伦举.PVT共控作用下油气的形成过程与演化模式[D].武汉:中国地质大学,2013. ZHENG Lunju.Formation process and evolution model of petroleum controlled by PVT[D].Wuhan:China University of Geosciences,2013.
[34] 郑伦举,马中良,王强,等.烃源岩有限空间热解生油气潜力定量评价研究[J].石油实验地质,2011,33(5):452-459. ZHENG Lunju,MA Zhongliang,WANG Qiang,et al.Quantitative evaluation of hydrocarbon yielding potential of source rock:application of pyrolysis in finite space[J].Petroleum Geology & Experiment,2011,33(5):452-459.
[35] 付小东,秦建中,姚根顺,等.两种温压体系下烃源岩生烃演化特征对比及其深层油气地质意义[J].地球化学,2017,46(3):262-275. FU Xiaodong,QIN Jianzhong,YAO Genshun,et al.The comparison of hydrocarbon generation and evolution characteristics between two temperature-pressure simulation systems and its geological significance for deep reservoir exploration[J].Geochimica,2017,46(3):262-275.
[36] 韩旭.镜质组反射率异常的影响因素及其校正研究[D].北京:中国石油大学(北京),2016. HAN Xu.The influence factors of abnormal vitrinite reflectance and correction[D].Beijing:China University of Petroleum (Beijing),2016.
[37] 漆立新.塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J].中国石油勘探,2016,21(3):38-51. QI Lixin.Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift,Tarim Basin[J].China Petroleum Exploration,2016,21(3):38-51.
[38] 马安来.塔河油田不同类型海相原油裂解动力学分析[J].天然气地球科学,2015,26(6):1120-1128. MA Anlai.Kinetics of oil-cracking of different types of marine oils from tahe oilfield,Tarim Basin,NW China[J].Natural Gas Geoscience,2015,26(6):1120-1128.
[39] 马安来,金之钧,刘金钟.塔里木盆地寒武系深层油气赋存相态研究[J].石油实验地质,2015,37(6):681-688. MA Anlai,JIN Zhijun,LIU Jinzhong.Hydrocarbon phase in the deep cambrian of the Tarim Basin[J].Petroleum Geology & Experiment,2015,37(6):681-688.
[40] 王民,黄靖轩,卢双舫,等.我国不同原油裂解成气动力学研究[J].海相油气地质,2017,22(2):8-16. WANG Min,HUANG Jingxuan,LU Shuangfang,et al.Kinetic features of gas oil cracking for the different types of crude oil in China[J].Marine Origin Petroleum Geology,2017,22(2):8-16.
[41] 李贤庆,仰云峰,王萌,等.塔里木盆地原油裂解成气动力学实验[J].新疆石油地质,2013,34(4):432-435. LI Xianqing,YANG Yunfeng,WANG Meng,et al.The kinetic experiment of crude oil cracked gas in Tarim Basin[J].Xinjiang Petroleum Geology,2013,34(4):432-435.
[42] 傅家谟,秦匡宗.干酪根地球化学[M].广州:广东科技出版社,1995. FU Jiamo,QIN Kuangzong.Kerogen geochemistry[M].Guangzhou:Guangdong Science and Technology Press,1995.
[43] 顾忆.塔里木盆地北部塔河油田油气藏成藏机制[J].石油实验地质,2000,22(4):307-312. GU Yi.Forming mechanism of hydrocarbon pools in Tahe Oilfield of the northern Tarim Basin[J].Petroleum Geology & Experiment,2000,22(4):307-312.
[44] 高晓歌,吴鲜,洪才均,等.顺北油田1号断裂带奥陶系原油地球化学特征[J].石油地质与工程,2018,32(6):37-40. GAO Xiaoge,WU Xian,HONG Caijun,et al.Geochemical characteristics of Ordovician crude oil in the No.1 fault zone of Shunbei oilfield[J].Petroleum Geology and Engineering,2018,32(6):37-40.
[1] XIE Qiaoming, WANG Zhenliang, YIN Chengming, LI Qingyao, LIAO Xiao, ZHAO Zilong, ZHANG Kuaile. Tectonic evolution characteristics of Yingjisha and Pishan areas and the influence on petroleum accumulation in the southwest depression, Tarim Basin[J]. 石油实验地质, 2019, 41(2): 165-175.
[2] WANG Ruyue, HU Zongquan, YANG Tao, GONG Dajian, YIN Shuai, LIU Zhongbao, GAO Bo. Pore structure characteristics of the Lower Cambrian black shale in the Cengong block, southeastern Guizhou area[J]. 石油实验地质, 2019, 41(2): 207-214.
[3] WANG Han, LI Zhiwu, LIU Shugen, SONG Jinmin, RAN Bo, LAI Dong, HAN Yuyue. Sedimentary characteristics and geological significance of tempestites in the Upper Cambrian Xixiangchi Formation, Chengkou area, northern margin of the Yangtze Platform[J]. 石油实验地质, 2019, 41(2): 176-184.
[4] LUO Shengyuan, LIU An, LI Hai, CHEN Xiaohong, ZHANG Miao. Gas-bearing characteristics and controls of the Cambrian Shuijingtuo Formation in Yichang area, Middle Yangtze region[J]. 石油实验地质, 2019, 41(1): 56-67.
[5] LI Hai, LIU An, LUO Shengyuan, CHEN Xiaohong, CHEN Lin. Characteristics of the Cambrian Shuijingtuo shale reservoir on Yichang Slope, western Hubei Province: a case study of well EYY 1[J]. 石油实验地质, 2019, 41(1): 76-82.
[6] HUANG Zhengqing, ZHOU Daorong, LI Jianqing, WU Tong, XU Feifei. Shale gas accumulation conditions and resource potential evaluation of the Cambrian in the Lower Yangtze area[J]. 石油实验地质, 2019, 41(1): 94-98.
[7] XIN Shiyin. Characteristics of main source rocks and their effectiveness in Papuan Basin[J]. 石油实验地质, 2018, 40(6): 843-848.
[8] ZHANG Hai, LEI Huawei, ZHANG Tao, BAI Yubin. Geochemical characteristics of Yan 9 crude oil and oil-source correlation in western Jingbian Oil Field, Ordos Basin[J]. 石油实验地质, 2018, 40(6): 836-842.
[9] XU Jin, ZHANG Caiming, XIE Xiaomin, RUI Xiaoqing. Separation of macerals in organic-rich source rocks and their geochemical characteristics[J]. 石油实验地质, 2018, 40(6): 828-835.
[10] WANG Ruyue, HU Zongquan, NIE Haikuan, LIU Zhongbao, CHEN Qian, GAO Bo, LIU Guangxiang, GONG Dajian. Comparative analysis and discussion of shale reservoir characteristics in the Wufeng-Longmaxi and Niutitang formations: a case study of the well JY1 in SE Sichuan Basin and well TX1 in SE Guizhou area[J]. 石油实验地质, 2018, 40(5): 639-649.
[11] QIAO Guilin, ZHENG Herong, YU Tengxiao, LUO Yu, LUO Shaohui. Fault belt reservoir controls in Yubei area, Tarim Basin[J]. 石油实验地质, 2018, 40(5): 662-668.
[12] CAO Tingting, XU Sihuang, Wang Yue. Characteristics of rare earth elements in Lower Cambrian Qiongzhusi Formation in northeastern Sichuan Basin and its geological implications: a case study of Yangba section, Nanjiang[J]. 石油实验地质, 2018, 40(5): 716-723.
[13] ZHAO Yue, CAI Jingong, XIE Aobo, DONG Zhe, ZHOU Qisheng, LEI Tianzhu, YANG Yan. Geochemical investigation of organic matter of various occurrences released via sequential treatments of two argillaceous source rock samples from fresh and saline lacustrine environments[J]. 石油实验地质, 2018, 40(5): 705-715.
[14] ZHANG Junlong, FENG Zihui, LI Qiang, ZHANG Bin. Evolution of Cambrian mound-beach gas reservoirs in Gucheng platform margin zone, Tarim Basin[J]. 石油实验地质, 2018, 40(5): 655-661.
[15] WANG Dandan, ZHANG Wenhao, LI Shizhen, ZHOU Xingui, LIU Weibin. Features and hydrocarbon potential of source rocks in the Hongdi 1 well, Hongmiaozi Basin, Liaoning province[J]. 石油实验地质, 2018, 40(4): 526-531.