Please wait a minute...
Petroleum Geology & Experiment  2019, Vol. 41 Issue (5): 630-637    DOI: 10.11781/sysydz201905630
Current Issue | Archive | Adv Search |
Oil and gas exploration domains on the southern slope of Central Tarim Uplift, Tarim Basin
QIAO Guilin1, ZHAO Yongqiang1, SHA Xuguang2, ZHOU Yushuang1, LUO Yu1
1. Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi, Jiangsu 214126, China;
2. Research Institute of Petroleum Exploration and Development, SINOPEC Northwest Company, Urumqi, Xinjiang 830011, China
Download: PDF (4499 KB)     
Export: BibTeX | EndNote (RIS)      
Abstract  Based on the analysis of seismic facies characteristics, combined with the relationship between sedimentary facies and TOC content of the main wells, we suggested that the sedimentary facies of the Middle-Lower Cambrian on the southern slope of Central Tarim Uplift is the same as those of the Central Tarim Uplift. The main deposits there are the evaporative platform in salt (mud) and the restricted dolomite platform facies. The hydrocarbon generation potential in the study area is worse than that of the dark grey and black mudstone (shale) developed in a deep water and under-compensated environment on the Manjiaer Slope. Also, we analyzed the accumulation characteristics of the main oil and gas reservoirs, and the reasons why nearly 20 wells in the buried hill area on the southern slope failed to produce commercial oil or gas. It was pointed out that faults controlled storage, reservoir and enrichment. The Ordovician oil and gas enrichment areas in the Central Tarim Uplift are mainly the intersection of the NW and NE fractures, the Central Tarim no. I "Y" type fault zone, the vicinity of NE strike-slip faults (< 1 km), the oil source communicating faults with a big fault throw (T81), and the graben-tensional fracture zone of NE strike-slips. It was pointed out that exploration of buried hills on the southern slope of Central Tarim should change from the high trap position of buried hills to the high trap position of dolomite buried hills near the main fault. The high positions of large anticlinal structural traps close to oil source with source communicating fractures and favorable reservoir and cap assemblage are the pre-salt hydrocarbon enrichment areas in Cambrian.
Key wordsreservoir      platform margin      buried hill      Middle and Lower Cambrian      Middle and Upper Ordovician      southern slope of Central Tarim Uplift      Tarim Basin     
Received: 15 April 2019      Published: 23 September 2019
ZTFLH:  TE122  
Cite this article:

.Oil and gas exploration domains on the southern slope of Central Tarim Uplift, Tarim Basin[J].Petroleum Geology & Experiment,2019,41(5):630-637.

URL:     OR

[1] 崔海峰,田雷,刘军,等.塔西南坳陷麦盖提斜坡奥陶系白云岩油气的发现及其勘探启示[J].天然气工业,2017,37(4):42-51. CUI Haifeng,TIAN Lei,LIU Jun,et al.Hydrocarbon discovery in the Ordovician dolomite reservoirs in the Maigaiti Slope,Southwest Depression of the Tarim Basin,and its enlightenment[J].Natural Gas Industry,2017,37(4):42-51.
[2] 崔海峰,田雷,张年春,等.塔西南坳陷寒武系玉尔吐斯组烃源岩分布特征[J].天然气地球科学,2016,27(4):577-583. CUI Haifeng,TIAN Lei,ZHANG Nianchun,et al.Distribution characteristics of the source rocks from Cambrian Yuertusi Formation in the Southwest Depression of Tarim Basin[J].Natural Gas Geoscience,2016,27(4):577-583.
[3] 崔海峰,田雷,张年春,等.塔西南坳陷南华纪-震旦纪裂谷分布及其与下寒武统烃源岩的关系[J].石油学报,2016,37(4):430-438. CUI Haifeng,TIAN Lei,ZHANG Nianchun,et al.Nanhua-Sinian rift distribution and its relationship with the development of Lower Cambrian source rocks in the Southwest Depression of Tarim Basin[J].Acta Petrolei Sinica,2016,37(4):430-438.
[4] 乔占峰,沈安江,倪新锋,等.塔里木盆地下寒武统肖尔布拉克组丘滩体系类型及其勘探意义[J].石油与天然气地质,2019,40(2):392-402. QIAO Zhanfeng,SHEN Anjiang,NI Xinfeng,et al.Types of mound-shoal complex of the Lower Cambrian Xiaoerbulake Formation in Tarim Basin,Northwest China,and its implications for exploration[J].Oil & Gas Geology,2019,40(2):392-402.
[5] 田雷,崔海峰,刘军,等.塔西南坳陷早、中寒武世岩相古地理格局分析[J].东北石油大学学报,2016,40(6):18-25. TIAN Lei,CUI Haifeng,LIU Jun,et al.Analysis on the Palaeogeographic framework of the Early-Middle Cambrian in Southwest Depression of Tarim Basin[J].Journal of Northeast Petro-leum University,2016,40(6):18-25.
[6] 杨鑫,徐旭辉,陈强路,等.塔里木盆地前寒武纪古构造格局及其对下寒武统烃源岩发育的控制作用[J].天然气地球科学,2014,25(8):1164-1171. YANG Xin,XU Xuhui,CHEN Qianglu,et al.Palaeotectonics pattern in Pre-Cambrian and its control on the deposition of the Lower Cambrian source rocks in Tarim Basin,NW China[J].Natural Gas Geoscience,2014,25(8):1164-1171.
[7] 胡明毅,孙春燕,高达.塔里木盆地下寒武统肖尔布拉克组构造-岩相古地理特征[J].石油与天然气地质,2019,40(1):12-23. HU Mingyi,SUN Chunyan,GAO Da.Characteristics of tectonic-lithofacies paleogeography in the Lower Cambrian Xiaoerbulake Formation,Tarim Basin[J].Oil & Gas Geology,2019,40(1):12-23.
[8] 程翠,何希鹏,陆亚秋.塔里木盆地塔中南坡奥陶系礁滩储层特征和控制因素[J].石油地质与工程,2009,23(5):21-24. CHENG Cui,HE Xipeng,LU Yaqiu.Characteristics and controls of Ordovician reef flat reservoirs in the southern Tazhong Slope of Tarim Basin[J].Petroleum Geology and Engineering,2009,23(5):21-24.
[9] 代鹏,丁文龙,曹自成,等.塔里木盆地塔中南坡地区奥陶系优质海相碳酸盐岩储层测井评价[J].物探与化探,2016,40(2):243-249. DAI Peng,DING Wenlong,CAO Zicheng,et al.Logging evaluation of high quality Ordovician marine carbonate reservoir on the south slope of Central Uplift Belt,Tarim Basin[J].Geophysical & Geochemical Exploration,2016,40(2):243-249.
[10] 肖子亢,丁文龙,曹自成,等.塔中南缘断裂坡折带成因演化及对奥陶系优质礁滩体的控制作用[J].地质科技情报,2019,38(1):35-44. XIAO Zikang,DING Wenlong,CAO Zicheng,et al.Genetic evolution and controlling effect on Ordovician reef with good property in the Tazhong Southern Faulted Slope Break[J].Geological Science and Technology Information,2019,38(1):35-44.
[11] 马庆佑,曹自成,吕海涛,等.塔里木盆地塔中南坡断裂特征及对油气成藏的控制[J].海相油气地质,2013,18(3):1-11. MA Qingyou,CAO Zicheng,LV Haitao,et al.Fault styles and the control on hydrocarbon accumulation in South Slope of Central Uplift Belt,Tarim Basin[J].Marine Origin Petroleum Geology,2013,18(3):1-11.
[12] 高志前,樊太亮,刘典波,等.塔里木盆地塔中南坡台缘带油气成藏条件[J].石油勘探与开发,2008,35(4):437-443. GAO Zhiqian,FAN Tailiang,LIU Dianbo,et al.Reservoir-forming conditions of platform margin belt in southern slope of Tazhong,Tarim Basin[J].Petroleum Exploration and Development,2008,35(4):437-443.
[13] 朱光有,张水昌,梁英波.中国海相碳酸盐岩气藏硫化氢形成的控制因素和分布预测[J].科学通报,2007,52(S1):115-125. ZHU Guangyou,ZHANG Shuichang,LIANG Yingbo.The controlling factors and distribution prediction of H2S formation in marine carbonate gas reservoir,China[J].Chinese Science Bulletin,2007,52(S1):150-163.
[14] 程汉列,王连山,高创波,等.塔中奥陶系储层硫化氢成因及主控因素[J].地质找矿论丛,2018,33(4):604-610. CHENG Hanlie,WANG Lianshan,GAO Chuangbo,et al.Origin of hydrogen sulfide and the main control factor of its distribution in Ordovician Carbonate reservoirs of Tazhong area[J].Contributions to Geology and Mineral Resources Research,2018,33(4):604-610.
[15] 马安来,金之钧,朱翠山,等.塔里木盆地中深1C井原油高聚硫代金刚烷及金刚烷硫醇的检出及意义[J].中国科学(地球科学),2018,48(10):1312-1323. MA Anlai,JIN Zhijun,ZHU Cuishan,et al.Detection and signifi-cance of higher thiadiamondoids and diamondoidthiols in oil from the Zhongshen 1C well of the Tarim Basin,NW China[J].Science China (Earth Sciences),2018,61(10):1440-1450.
[16] 王飞宇,杜治利,张宝民,等.柯坪剖面中上奥陶统萨尔干组黑色页岩地球化学特征[J].新疆石油地质,2008,29(6):687-689. WANG Feiyu,DU Zhili,ZHANG Baomin,et al.Geochemistry of Salgan black shales of Middle-Upper Ordovician in Keping Outcrop,Tarim Basin[J].Xinjiang Petroleum Geology,2008,29(6):687-689.
[17] 谢会文,能源,敬兵,等.塔里木盆地寒武系-奥陶系白云岩潜山勘探新发现与勘探意义[J].中国石油勘探,2017,22(3):1-11. XIE Huiwen,NENG Yuan,JING Bing,et al.New discovery in exploration of Cambrian-Ordovician dolomite buried hills in Tarim Basin and its significance[J].China Petroleum Exploration,2017,22(3):1-11.
[1] MA Ling, LI Jie, XU Shenglin, CHEN Xuan, YANG Shuai, LI Fuxiang. Diagenesis types and characteristics of Xishanyao Formation in Malang Sag, Santanghu Basin[J]. 石油实验地质, 2019, 41(4): 508-515.
[2] WANG Yuxiang, WANG Bin, GU Yi, FU Qiang, WAN Yanglu, LI Yingtao. Geochemical characteristics and geological significance of calcite filled fractures and caves in Middle-Lower Ordovician, northern Shuntuoguole area, Tarim Basin[J]. 石油实验地质, 2019, 41(4): 583-592.
[3] LIU Jinshui, LU Yongchao, QIN Lanzhi. Application of source to sink system analysis in large reservoir research: a case study of Huagang Formation, Central Inversion Belt, Xihu Depression[J]. 石油实验地质, 2019, 41(3): 303-310.
[4] WANG Qiang, WEI Xiangfeng, WEI Fubin, YAN Jihong, WAN Li. Overpressure in shale gas reservoirs of Wufeng-Longmaxi formations, Fuling area, southeastern Sichuan Basin[J]. 石油实验地质, 2019, 41(3): 333-340.
[5] PENG Li, WANG Zhenbiao, YANG Jianping, LU Yongchao, WANG Qian, ZHANG Shaowei, WANG Na, PENG Peng. Characteristics and controlling factors of low-permeability reservoirs in Silurian Kepingtage Formation, 10th tectonic belt in the Tazhong area, Tarim Basin[J]. 石油实验地质, 2019, 41(3): 355-362.
[6] ZHANG Yongdong, ZHAO Yongqiang, MA Hongqiang. Densification and diagenetic facies of Donghetang Formation sandstone reservoir in Bachu-Maigaiti area, Tarim Basin[J]. 石油实验地质, 2019, 41(3): 363-371.
[7] HUANG Cheng. Multi-stage activity characteristics of small-scale strike-slip faults in superimposed basin and its identification method: a case study of Shunbei area, Tarim Basin[J]. 石油实验地质, 2019, 41(3): 379-389.
[8] CUI Weilan, HAN Huafeng, ZHANG Yong, BAI Yubin. Microscopic characteristics and oil content of Chang 6 tight sandstone reservoirs in Lijiachengze area, Jingbian Oil Field, Ordos Basin[J]. 石油实验地质, 2019, 41(3): 390-397.
[9] HAN Zhiyan. Diagenesis controls on high-quality reservoirs of the Yingcheng-Shahezi formations in the Lishu Fault Depression, Songliao Basin[J]. 石油实验地质, 2019, 41(3): 398-403.
[10] XU Yongqiang, HE Yonghong, BU Guangping, CHEN Lin, LIU Linyu, ZHU Yushuang. Establishment of classification and evaluation criteria for tight reservoirs based on characteristics of microscopic pore throat structure and percolation: a case study of Chang 7 reservoir in Longdong area, Ordos Basin[J]. 石油实验地质, 2019, 41(3): 451-461.
[11] GU Yi, WAN Yanglu, HUANG Jiwen, ZHUANG Xinbing, WANG Bin, LI Miao. Prospects for ultra-deep oil and gas in the “deep burial and high pressure” Tarim Basin[J]. 石油实验地质, 2019, 41(2): 157-164.
[12] XIE Qiaoming, WANG Zhenliang, YIN Chengming, LI Qingyao, LIAO Xiao, ZHAO Zilong, ZHANG Kuaile. Tectonic evolution characteristics of Yingjisha and Pishan areas and the influence on petroleum accumulation in the southwest depression, Tarim Basin[J]. 石油实验地质, 2019, 41(2): 165-175.
[13] ZHANG Weizhong, ZHANG Yunyin, WANG Xingmou, ZHA Ming, DONG Li, LIU Haining, QU Zhipeng, YU Jingqiang. Transmission model of secondary gas reservoir on the basin margin of Jiyang Depression[J]. 石油实验地质, 2019, 41(2): 185-192.
[14] LIU Jingjing, LIU Zhen, WANG Zisong, CAO Shang, SUN Xiaoming. Gas migration mode for the central canyon in deep-water Qiongdongnan Basin[J]. 石油实验地质, 2019, 41(2): 193-199.
[15] ZUO Zongxin, LU Jianlin, WANG Miao, LI Ruilei, LI Hao, ZHU Jianfeng. Fault characteristics and controls on hydrocarbon accumulation in Changling Faulted Depression, Songliao Basin[J]. 石油实验地质, 2019, 41(2): 200-206.