Please wait a minute...
Petroleum Geology & Experiment  2019, Vol. 41 Issue (5): 762-768    DOI: 10.11781/sysydz201905762
Current Issue | Archive | Adv Search |
Genetic mechanism and quantitative evaluation of fault traps in Xicaogu structural belt, Shulu Sag, Bohai Bay Basin
XIAO Yao1, LI Xiaodong2, ZHENG Ronghua3, LIU Cong1, ZHAO Zhengquan4
1. School of Earth Sciences, Northeast Petroleum University, Daqing, Heilongjiang 163318, China;
2. Exploration Division, PetroChina Huabei Oilfield Branch Company, Renqiu, Hebei 062552, China;
3. Exploration and Development Research Institute, PetroChina Huabei Oilfield Branch Company, Renqiu, Hebei 062552, China;
4. No.5 Oil Production Plant, PetroChina Huabei Oilfield Branch Company, Xinji, Hebei 052360, China
Download: PDF (1824 KB)     
Export: BibTeX | EndNote (RIS)      
Abstract  The fault traps in the Xicaogu structural belt in the Shulu Sag of the Bohai Bay Basin were studied. They are mainly synthetic fault traps and antithetic fault traps. A displacement-distance curve was drawn according to the variation of displacement. In this way, the segmental growth process of faults was restored, and the genetic mechanism of faults was determined. The synthetic fault traps were developed at the segmental growth point of the hanging wall of the fault. The antithetic fault traps were developed between the segmental growth points of the head wall of the fault during fault nucleation, with the largest displacement in the head wall of the fault. Some parameters such as the correlation between faults and strata (synthetic or antithetic faults), the maximum displacement, fault dip angle and strike, stratigraphic dip angle, fault segment length and formation rotation angle were selected to quantitatively evaluate their controls on fault physical properties. A model and a quantitative calculation method for the area of synthetic and antithetic fault traps were established, and were applied in the Jin 93 fault trap. The calculated error value is only about 2%, which indicates that the quantitative evaluation of fault traps is feasible.
Key wordsfault trap      genetic mechanism      quantitative evaluation      Xicaogu structural belt      Shulu Sag      Bohai Bay Basin     
Received: 04 May 2019      Published: 23 September 2019
ZTFLH:  TE121.2  
Cite this article:

.Genetic mechanism and quantitative evaluation of fault traps in Xicaogu structural belt, Shulu Sag, Bohai Bay Basin[J].Petroleum Geology & Experiment,2019,41(5):762-768.

URL:     OR

[1] KIM Y S,SANDERSON D J.The relationship between displacement and length of faults:a review[J].Earth-Science Review,2005,68(3/4):317-334.
[2] ROBERTS A M,YIELDING G.Deformation around basin-margin faults in the North Sea/mid-Norway rift[J].Geological Society,London,Special Publications,1991,56(1):61-78.
[3] 漆家福.渤海湾新生代盆地的两种构造系统及其成因解释[J].中国地质,2004,31(1):15-22. QI Jiafu.Two tectonic systems in the Cenozoic Bohai Bay Basin and their genetic interpretation[J].Geology in China,2004,31(1):15-22.
[4] 王海学,李明辉,沈忠山,等.断层分段生长定量判别标准的建立及其地质意义:以松辽盆地杏北开发区萨尔图油层为例[J].地质评论,2014,60(6):1259-1264. WANG Haixue,LI Minghui,SHEN Zhongshan,et al.The establishment and geological significance of quantitative discrimination criterion of fault segmentation growth:an example from Saertu reservoir in Xingbei development area of Songliao Basin[J].Geological Review,2014,60(6):1259-1264.
[5] 孙同文,付广,吕延防,等.断裂输导流体的机制及输导形式探讨[J].地质论评,2012,58(6):1081-1090. SUN Tongwen,FU Guang,LV Yanfang,et al.A discussion on fault conduit fluid mechanism and fault conduit form[J].Geological Review,2012,58(6):1081-1090.
[6] 吕延防,付广,付晓飞,等.断层对油气的输导与封堵作用[M].北京:石油工业出版社,2013. LV Yanfang,FU Guang,FU Xiaofei,et al.Transport and sealing of oil and gas by faults[M].Beijing:Petroleum Industry Press,2013.
[7] 刘震,张旺,曹尚,等.断层输导作用与油气充注作用关系分析[J].地质科学,2014,49(4):1302-1313. LIU Zhen,ZHANG Wang,CAO Shang,et al.The analysis of diffe-rences between fault conduiting and charging for hydrocarbon[J].Chinese Journal of Geology,2014,49(4):1302-1313.
[8] 卓勤功.断陷盆地洼陷带岩性油气藏成藏机理及运聚模式[J].石油学报,2006,27(6):19-23. ZHUO Qingong.Reservoir-forming mechanism and migration-accumulation mode of lithological pool in deep sub-depression of rift-subsidence basin[J].Acta Petrolei Sinica,2006,27(6):19-23.
[9] 罗群,庞雄奇,姜振学.断裂控烃机理与模式[M].北京:石油工业出版社,2007. LUO Qun,PANG Xiongqi,JIANG Zhenxue.Fault control mechanism and model[M].Beijing:Petroleum Industry Press,2007.
[10] 付晓飞,孙兵,王海学,等.断层分段生长定量表征及在油气成藏研究中的应用[J].中国矿业大学学报,2015,44(2):271-281. FU Xiaofei,SUN Bing,WANG Haixue,et al.Fault segmentation growth quantitative characterization and its application on sag hydrocarbon accumulation research[J].Journal of China University of Mining & Technology,2015,44(2):271-281.
[11] 赵贤正,金凤鸣.断陷斜坡油气藏形成分布与精细勘探:以冀中拗陷及二连盆地为例[M].北京:科学出版社,2012. ZHAO Xianzheng,JIN Fengming.Formation,distribution and fine exploration of faulted slope oil and gas reservoirs:a case study of Jizhong Depression and Erlian Basin[M].Beijing:Science Press,2012.
[12] 杨君.束鹿凹陷西斜坡沙河街组沉积微相及成岩作用研究[D].青岛:中国石油大学(华东),2010. YANG Jun.The study on the sedimentary microfacies and diagenesis of Shahejie Formation of West Slop of Shulu Depression[D].Qingdao:China University of Petroleum (East China),2010.
[13] 刘世瑞.束鹿凹陷缓坡带断裂系统及其控藏作用[D].大庆:东北石油大学,2016. LIU Shirui.Study of fault system and reservoir-controlling mechanism:a case of Shulu Slope,Jizhong Depression[D].Daqing:Northeast Petroleum University,2016.
[14] CLOOS H.Vber antithetische bewegungen[J].Geologische Rundschau,1928,19(3):246-251.
[15] HILLS E S.Outlines of structural geology[D].Lectrurer in Geo-logy in the University of Melbourne,1962.
[16] PEACOCK D C P.Displacements and segment linkage in strike-slip fault zones[J].Journal of Structural Geology,1991,13(9):1025-1035.
[17] 王海学,吕延防,付晓飞,等.裂陷盆地转换带形成演化及其控藏机理[J].地质科技报,2013,32(4):102-110. WANG Haixue,LV Yanfang,FU Xiaofei,et al.Formation,evolution and reservoir-controlling mechanism of relay zone in rift basin[J].Geological Science and Technology Information,2013,32(4):102-110.
[18] FOSSEN H.Structural geology[M].New York:Cambridge University Press,2010:119-185.
[19] 张万选.论油、气藏的分类及中国油、气藏的主要类型[J].石油学报,1981,2(3):1-11. ZHANG Wanxuan.On classification of petroleum pools and the types of petroleum pools in China[J].Acta Petrolei Sinica,1981,2(3):1-11.
[20] 郭志强,王海学,赵政权,等.同向和反向断层形成机制及控圈作用差异性[J].大庆石油地质与开发,2017,36(3):1-6. GUO Zhiqiang,WANG Haixue,ZHAO Zhengquan,et al.Forming mechanism of the synthetic and antithetic faults and differences of their controlling action on the traps[J].Petroleum Geology and Oilfield Development in Daqing,2017,36(3):1-6.
[1] CAO Bing, DU Xuebin, LU Yongchao, LIU Huimin, LIU Zhanhong, MA Yiquan, WANG Yong, ZHAO Ke, YANG Pan, PENG Li. Identification and controlling factors of multi-scale lithofacies for continental shale under an isochronous stratigraphic framework: a case study in Dongying Sag, Bohai Bay Basin[J]. 石油实验地质, 2019, 41(5): 752-761.
[2] DONG Dawei, ZHAO Li, LI Tingting, SHI Rui, LI Tong, SUN Yifei, SUN Hao. Evolution mechanism and hydrocarbon reservoir characteristics of typical slope zones in Jizhong Depression, Bohai Bay Basin[J]. 石油实验地质, 2019, 41(4): 498-507.
[3] CHENG Kenan. Sedimentology of lower section of third member of Shahejie Formation on western slope of Lijin Subsag, Dongying Sag, Bohai Bay Basin: a case study of Bin 648 area, Binnan Oil Field[J]. 石油实验地质, 2019, 41(4): 516-523.
[4] FENG Yuelin, LIU Hua, SONG Guoqi, YUAN Feifei. Calculation and application of plane pressure decrease gradient[J]. 石油实验地质, 2019, 41(4): 598-605.
[5] LIU Junqiao, WANG Wei, LÜ Yanfang, FU Guang. Quantitative evaluation of vertical fault transport in Daliuquan area of Langgu sag, Bohai Bay Basin[J]. 石油实验地质, 2019, 41(4): 606-613.
[6] LI Zhipeng, BU Lixia. Difference of lithofacies mechanical properties of the fourth member of Shahejie Formation in the Bonan Subsag, Bohai Bay Basin[J]. 石油实验地质, 2019, 41(2): 228-233.
[7] XIA Zunyi, MA Haiyang, FANG Kun. Rock mechanical properties and fracability of continental shale in Zhanhua Sag, Bohai Bay Basin[J]. 石油实验地质, 2019, 41(1): 134-141.
[8] MA Haiyang, XIA Zunyi, WEN Qingzhi, ZHANG Pengyu. Micro-pore characteristics of shale in Zhanhua Sag, Bohai Bay Basin[J]. 石油实验地质, 2019, 41(1): 149-156.
[9] GAO Liang, SUN Bo, WANG Yanzhang. Sedimentary characteristics and controlling factors of beach-bar sandstones of the upper section of the fourth member of Shahejie Formation on the southern slope of Dongying Sag,Bohai Bay Basin[J]. 石油实验地质, 2018, 40(5): 669-675.
[10] ZHANG Qin, LIANG Feng, PANG Zhenglian, ZHOU Shangwen, LIN Wen. Quantitative influence of soluble organic matter on pore structure in transitional shale[J]. 石油实验地质, 2018, 40(5): 730-738.
[11] WANG Miao, LU Jianlin, ZUO Zongxin, LI Hao, WANG Baohua. Characteristics and dominating factors of lamellar fine-grained sedimentary rocks: A case study of the upper Es4 member-lower Es3 member, Dongying Sag, Bohai Bay Basin[J]. 石油实验地质, 2018, 40(4): 470-478.
[12] BAO Youshu. Effective reservoir spaces of Paleogene shale oil in the Dongying Depression, Bohai Bay Basin[J]. 石油实验地质, 2018, 40(4): 479-484.
[13] TIAN Derui, WU Kui, ZHANG Rucai, PAN Wenjing, WANG Xin. Geochemical features and oil-source correlation of crude oils from JZ20 oil field on the northern margin of Liaoxi Uplift,Bohai Bay Basin[J]. 石油实验地质, 2018, 40(3): 410-417.
[14] WU Xiaohe. Complex fault interpretation of buried hills: A case study of Zhuanghai region in Jiyang Depression, Bohai Bay Basin[J]. 石油实验地质, 2018, 40(3): 439-447.
[15] LI Li, ZHAO Li, DONG Dawei. Mechanism and sedimentary responses of oblique faults: A case study of Jiyang Depression, Bohai Bay Basin[J]. 石油实验地质, 2018, 40(2): 149-158.