Please wait a minute...
Petroleum Geology & Experiment  2019, Vol. 41 Issue (5): 773-778    DOI: 10.11781/sysydz201905773
Current Issue | Archive | Adv Search |
A method for predicting production capacity based on a shale gas content test
JIANG Zhigao, CAO Haihong, DING Anxu, GAO Hequn
Research Institute of Petroleum Exploration & Development, SINOPEC East China Branch Company, Yangzhou, Jiangsu 225007, China
Download: PDF (2117 KB)     
Export: BibTeX | EndNote (RIS)      
Abstract  At present, there is no way to predict shale gas well production capacity at home and abroad. There are many disputes because the gas content test results are different from later production. Through the analysis of the desorption process, the question as to why the output of many shale gas wells with similar gas volume is greatly different was preliminarily answered. Gas content data is not enough to characterize gas-bearing capacity, which should be taken into consideration together with the desorption process, such as desorption rate and free gas content factors. A new coefficient was defined, namely the gas content index:gas content index=desorption rate×free gas content×total gas volume. The internal meaning of the gas content index was also analyzed. Some relevant factors of shale gas production were screened through field gas content tests. Two factors, gas content index and pressure coefficient, which have an obvious correlation with daily production, were selected. A multiple regression model was established in view of these two factors. A daily output prediction formula was obtained. Daily output=0.146 7×pressure coefficient7.2×gas content index+0.086 4. The reliability of the model was verified on site, so that the capacity of shale gas wells can be preliminarily predicted after the completion of field gas content testing.
Key wordsgas content test      productivity prediction      gas content index      desorption process      free gas content     
Received: 11 January 2019      Published: 23 September 2019
ZTFLH:  TE122.11  
Cite this article:

.A method for predicting production capacity based on a shale gas content test[J].Petroleum Geology & Experiment,2019,41(5):773-778.

URL:

http://www.sysydz.net/EN/10.11781/sysydz201905773     OR     http://www.sysydz.net/EN/Y2019/V41/I5/773

[1] 岳来群.低油价背景下有关页岩气问题的几点思考[J].中国国土资源经济,2015,28(10):13-17. YUE Laiqun.Thoughts on the issues of shale gas under the background of low oil prices[J].Natural Resource Economics of China,2015,28(10):13-17.
[2] 高辉,何梦卿,赵鹏云,等.鄂尔多斯盆地长7页岩油与北美地区典型页岩油地质特征对比[J].石油实验地质,2018,40(2):133-140. GAO Hui, HE Mengqing, ZHAO Pengyun,et al.Comparison of geological characteristics of Chang 7 shale oil in Ordos Basin and typical shale oil in North America[J].Petroleum Geology & Experiment,2018,40(2):133-140.
[3] 董大忠,高世葵,黄金亮,等.论四川盆地页岩气资源勘探开发前景[J].天然气工业,2014,34(12):1-15. DONG Dazhong,GAO Shikui,HUANG Jinliang,et al.A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J].Natural Gas Industry,2014,34(12):1-15.
[4] 范照伟.全球天然气发展格局及我国天然气发展方向分析[J].中国矿业,2018,27(4):11-16. FAN Zhaowei.Global natural gas development pattern and the ana-lysis of development direction of natural gas in China[J].China Mining Magazine,2018,27(4):11-16.
[5] 刘尧文,王进,张梦吟,等.四川盆地涪陵地区五峰-龙马溪组页岩气层孔隙特征及对开发的启示[J].石油实验地质,2018,40(1):44-50. LIU Yaowen, WANG Jin, ZHANG Mengyin,et al.Pore features of shale gas layer in Wufeng-Longmaxi formations in Fuling area of Sichuan Basin and the application to development[J].Petroleum Geology & Experiment,2018,40(1):44-50.
[6] 滕建彬.东营凹陷利页1井泥页岩中白云石成因及层序界面意义[J].油气地质与采收率,2018,25(2):1-7,36. TENG Jianbin.Genesis of dolomite in shale drilled by Well Liye1 in Dongying Sag and its significance on sequence boundary indication[J].Petroleum Geology and Recovery Efficiency,2018,25(2):1-7,36.
[7] 金军,王冉.超临界CO2注入与页岩气储层相互作用的研究进展[J].断块油气田,2018,25(03):363-366. JIN Jun,WANG Ran.Research progress of supercritical CO2 injection and its interaction with shale gas reservoirs[J].Fault-Block Oil and Gas Field,2018,25(03):363-366.
[8] 张文涛.毛细管突破压力模拟实验及页岩封闭能力[J].石油实验地质,2018,40(4):577-582. ZHANG Wentao.Experimental study of the breakthrough pressure of capillaries and the sealing ability of shale[J].Petroleum Geology & Experiment,2018,40(4):577-582.
[9] 俞凌杰,范明,腾格尔,等.埋藏条件下页岩气赋存形式研究[J].石油实验地质,2016,38(4):438-444. YU Lingjie,FAN Ming,TENGER,et al.Shale gas occurrence under burial conditions[J].Petroleum Geology & Experiment,2016,38(4):438-444.
[10] 戴方尧,郝芳,胡海燕,等.川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素[J].地球科学,2017,42(7):1185-1194. DAI Fangyao,HAO Fang,HU Haiyan,et al.Occurrence mechanism and key controlling factors of Wufeng-Longmaxi shale gas,eastern Sichuan Basin[J].Earth Science,2017,42(7):1185-1194.
[11] 王飞宇,关晶,冯伟平,等.过成熟海相页岩孔隙度演化特征和游离气量[J].石油勘探与开发,2013,40(6):764-768. WANG Feiyu,GUAN Jing,FENG Weiping,et al.Evolution of overmature marine shale porosity and implication to the free gas volume[J].Petroleum Exploration and Development,2013,40(6):764-768.
[12] 高和群,丁安徐,陈云燕.页岩气解析规律及赋存方式探讨[J].高校地质学报,2017,23(2):285-295. GAO Hequn,DING Anxu,CHEN Yunyan.Discussion on the rules of gas desorption and occurrence mode in shales[J].Geological Journal of China Universities,2017,23(2):285-295.
[13] 齐亚东,刘志远,瞿云华.页岩气的开发[J].科技导报,2016,34(23):18-27. QI Yadong,LIU Zhiyuan,QU Yunhua.A summary of shale gas development[J].Science & Technology Review,2016,34(23):18-27.
[14] 刘成均,郭平,蒙春,等.页岩气开发利用及其前景分析[J].石油科技论坛,2014,33(2):40-46. LIU Chengjun,GUO Ping,MENG Chun,et al.Shale gas exploitation and its prospect[J].Oil Forum,2014,33(2):40-46.
[15] 卢德唐,张龙军,郑德温,等.页岩气组分模型产能预测及压裂优化[J].科学通报,2016,61(1):94-101. LU Detang,ZHANG Longjun,ZHENG Dewen,et al.Shale productivity prediction and fracturing optimization based on compositional simulation[J].Chinese Science Bulletin,2016,61(1):94-101.
[16] 任飞,王新海,任凯,等.考虑压裂区渗透率变化的页岩气井产能评价[J].断块油气田,2013,20(5):649-651. REN Fei,WANG Xinhai,REN Kai,et al.Evaluation on productivity of shale gas well considering change of permeability in fractured zone[J].Fault-block Oil & Gas Field,2013,20(5):649-651.
[17] 桑宇,杨胜来,郭小哲,等.一种已压裂页岩气水平井的产量预测新方法[J].西南石油大学学报(自然科学版),2015,37(3):17-24. SANG Yu,YANG Shenglai,GUO Xiaozhe,et al.A new productivity prediction method for fractured horizontal wells in shale gas reservoirs[J].Journal of Southwest Petroleum University (Science & Technology Edition),2015,37(3):17-24.
[18] LIU Qiguo,CHEN Yindi,WANG Weidong,et al.A productivity prediction model for multiple fractured horizontal wells in shale gas reservoirs[J].Journal of Natural Gas Science and Engineering,2017,42:252-261.
[19] 姜宝益,李治平,第五鹏祥,等.页岩气产能评价方法及模型研究[J].科学技术与工程,2014,14(25):58-62. JIANG Baoyi,LI Zhiping,DIWU Pengxiang,et al.Shale gas productivity evaluation and model study[J].Science Technology and Engineering,2014,14(25):58-62.
[20] 宋涛涛,毛小平.页岩气资源评价中含气量计算方法初探[J].中国矿业,2013,22(1):34-36. SONG Taotao,MAO Xiaoping.Discussion on gas content calculation method of shale gas resource evaluation[J].China Mining Magazine,2013,22(1):34-36.
[21] 余友,蔡小聪,熊友明.新型页岩气产能预测研究[J].山东化工,2014,43(1):36-38. YU You,CAI Xiaocong,XIONG Youming.Research of new shale gas production capacity prediction[J].Shandong Chemical Industry,2014,43(1):36-38.
[22] 姚光华,王晓泉,杜宏宇,等.USBM方法在页岩气含气量测试中的适应性[J].石油学报,2016,37(6):802-806. YAO Guanghua,WANG Xiaoquan,DU Hongyu,et al.Applicability of USBM method in the test on shale gas content[J].Acta Petrolei Sinica,2016,37(6):802-806.
[23] 习传学,孙冲,方帆,等.页岩含气量现场测试技术研究[J].石油实验地质,2018,40(1):25-29. XI Chuanxue,SUN Chong,FANG Fan,et al.Field testing technology for shale gas content[J].Petroleum Geology & Experiment,2018,40(1):25-29.
[24] 于文龙,朱炎铭,刘鹏,等.陆相暗色泥页岩含气量及其影响因素探讨:以胶莱盆地水南组为例[J].科学技术与工程,2018,18(9):215-222. YU Wenlong,ZHU Yanming,LIU Peng,et al.Gas content of dark shale in continental facies and its influencing factors:a case study of Shuinan Formation in Jiaolai Basin[J].Science Technology and Engineering,2018,18(9):215-222.
[25] 国家能源局.页岩含气量测定方法:SY/T 6940-2013[S].北京:石油工业出版社,2014. National Energy Administration.Measurement method of shale gas content:SY/T 6940-2013[S].Beijing:Petroleum Industry Press,2014.
[1] LU Xiaolin, SHI Ning, LI Meijun, ZHANG Zhongtao, FU Jian, CHEN Cong, LAI Hongfei, DAI Jinhui. Distribution patterns and geochemical implication of bicadinanes in crude oils from Baiyun Sag, Pearl River Mouth Basin[J]. 石油实验地质, 2019, 41(4): 560-568.
[2] HAN Yuyue, RAN Bo, LI Zhiwu, LIU Shugen, YE Yuehao, WANG Han, YU Xiaoxuan. Characteristics of biomarker compounds and their implications for Lower Cambrian black shale on the northern margin of Sichuan Basin[J]. 石油实验地质, 2019, 41(3): 435-442.
[3] CHEN Rong, YUAN Kun, ZHANG Ziya, XU Qiufeng, LU Shufan, HE Jingbo. Geochemical characteristics of organic-rich shale in the Dawuba Formation, western Guizhou Province[J]. 石油实验地质, 2019, 41(1): 10-15.
[4] LIU Guoheng, ZHAI Gangyi, ZOU Caineng, HUANG Zhilong, XIA Xianghua, SHI Dishi, ZHOU Zhi, CHEN Rong, ZHANG Cong, YU Shufang. Silicon sources and hydrocarbon accumulation in shale, Triassic Yanchang Formation, Ordos Basin[J]. 石油实验地质, 2019, 41(1): 45-55.
[5] ZHANG Hai, LEI Huawei, ZHANG Tao, BAI Yubin. Geochemical characteristics of Yan 9 crude oil and oil-source correlation in western Jingbian Oil Field, Ordos Basin[J]. 石油实验地质, 2018, 40(6): 836-842.
[6] WANG Wei, SHEN Zhongmin, PEI Senqi, DAI Hongming, HUANG Dong. Light hydrocarbon characteristics of petroleum in a tight sandstone gas reservoir and its geological significance: a case study of the Upper Triassic Xujiahe Formation gas reservoir in the northwestern Sichuan Basin[J]. 石油实验地质, 2018, 40(6): 818-827.
[7] ZHAO Yue, CAI Jingong, XIE Aobo, DONG Zhe, ZHOU Qisheng, LEI Tianzhu, YANG Yan. Geochemical investigation of organic matter of various occurrences released via sequential treatments of two argillaceous source rock samples from fresh and saline lacustrine environments[J]. 石油实验地质, 2018, 40(5): 705-715.
[8] FENG Lu, ZENG Huasen, WANG Hongwei. Impact of igneous intrusion on the thermal evolution of source rocks with different maturities: a case study of Fangzheng Fault Depression and Suibin Sag in north-eastern China[J]. 石油实验地质, 2018, 40(5): 724-729.
[9] WANG Dandan, ZHANG Wenhao, LI Shizhen, ZHOU Xingui, LIU Weibin. Features and hydrocarbon potential of source rocks in the Hongdi 1 well, Hongmiaozi Basin, Liaoning province[J]. 石油实验地质, 2018, 40(4): 526-531.
[10] NIU Chengmin, WANG Feilong, TANG Guomin, YAN Ge, ZHAO Guoxiang. Evaporative fractionation and biodegradation impacts on a complex petroleum system: QHD29-2 oil field, Bohai Sea area[J]. 石油实验地质, 2018, 40(3): 381-388.
[11] WANG Qin, XIE Xiaomin, TENGER Boltsjin, RUI Xiaoqing, XU Jin. Bio-precursor characterization and hydrocarbon generation potential of shale in Eocene Huadian Formation, Huadian Basin[J]. 石油实验地质, 2018, 40(3): 403-409.
[12] GAO Dongchen, GUO Chao, JIANG Chengfu, ZHANG Lixia, WANG Hui, SHI Peng, CHEN Yiyi. Hydrocarbon generation simulation of low-maturity shale in Shanxi Formation, Ordos Basin[J]. 石油实验地质, 2018, 40(3): 454-460.
[13] KANG Jianwei, YAN Jianfei, YU Qian, TIAN Jingchun, MEN Yupeng, SUN Yuanyuan. Characteristics of organic-rich shale in Wufeng-Longmaxi formations in Suiyang area of northern Guizhou and its implication to shale gas[J]. 石油实验地质, 2018, 40(2): 185-192.
[14] NI Chunhua, LIU Guangxiang, ZHU Jianhui, WU Xiaoqi, BAO Jianping. Origin and source of natural gas in the Upper Paleozoic in Hangjinqi area, Ordos Basin[J]. 石油实验地质, 2018, 40(2): 193-199.
[15] SONG Yingrui, HOU Yuguang, LIU Yukun, HE Sheng, FAN Zhiwei, LIANG Yaqi. Thermal evolution and hydrocarbon generation histories of black shale in Lower Carboniferous Baizuo Formation, Southern Guizhou Depression[J]. 石油实验地质, 2018, 40(2): 226-232.